

DEPARTMENT OF INDUSTRIAL CHEMISTRY M.Sc., Chemistry

REGULATIONS AND SYLLABUS [For the candidates admitted from the Academic Year 2022 – 2023 onwards]

ALAGAPPA UNIVERSITY

(A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle andGraded as Category-I University by MHRD-UGC) Karaikudi -630003, Tamil Nadu.

ALAGAPPA UNIVERSITY DEPARTMENT OF INDUSTRIAL CHEMISTRY Karaikudi -630003, Tamil Nadu.

REGULATIONS AND SYLLABUS - (CBCS-University Department) [For the candidates admitted from the Academic Year 2022 – 2023 onwards]

Name of the Department	: Industrial Chemistry
Name of the Programme	: M.Sc., Chemistry
Duration of the Programme	: Full Time (Two Years)

Choice-Based Credit System

Choice-Based Credit System is a flexible system of learning. This system allows students to gain knowledge at their own tempo. Students shall decide on electives from a wide range of elective courses offered by the Department in consultation with the Departmental committee. Students undergo additional courses and acquire more than the required number of credits. They can also adopt an inter-disciplinary and intra-disciplinary approach to learning, and make the best use of the expertise of available faculty and resources.

Programme

"Programme" means a course of study leading to the award of a degree in a discipline.

Course

'Course' is a component (a paper) of a programme. Each course offered by the Department is identified by a unique course code. A course contains lectures / tutorials / laboratory / seminar / project work / internship / report / viva-voce, etc or a combination of these, to meet effectively the teaching and learning needs.

Credit

The term "Credit" refers to the weightage given to a course, usually in relation to the instructional hours assigned to it. Normally in each of the courses, credit(s) will be assigned on the basis of the number of lectures / tutorial / laboratory and other forms of learning required to complete the course contents in a 15-week schedule. One credit is equal to one hour of lecture per week. For laboratory / field work, one credit is equal to two hours.

Semester

An academic year is divided into 2 semesters. In each semester, courses are offered in 15 teaching weeks and the remaining 5 weeks are to be utilized for conduct of examination and evaluation purposes. Each week has 30 working hours spread over 5 days a week.

Medium of Instruction

Medium of Instruction is English.

Departmental committee

The Departmental Committee consists of the faculty of the Department. The Departmental Committee shall be responsible for admission to all the programmes offered by the Department including the conduct of entrance test, verification of records, admission, and evaluation. The Departmental Committee determines the deliberation of courses and specifies the allocation of credits semester-wise and course-wise. For each course, it will also identify the number of credits for lectures, tutorials, practicals, seminars etc. The courses (Core / Discipline Specific Elective / Non-Major Elective) are designed by teachers and approved by the Departmental Committee. Courses approved by the Departmental Committee shall be approved by the Board of Studies or Broad Based Board of Studies as the case may be. A teacher offering a course will also be responsible for maintaining attendance and performance sheets (CIA-1, CIA-2, assignments and seminar) of all the students registered for the course.

For non-major elective course, MOOCs coordinator and internal mentor are responsible for submitting the performance sheet to the Head of the department. The Head of the Department consolidates all such performance sheets of courses pertaining to the course offered by the Department and then forwards the same to the Controller of Examinations.

Programme Educational Objectives (PEO)

PEO-1	To acquire deep knowledge in fundamental aspects of all branches of Chemistry.	
PEO-2	To provide thorough, well designed studies of theoretical and experimental	
	Chemistry, a worthwhile educational experience.	
PEO-3	To acquire basic knowledge in the specialized thrust areas	
PEO-4	To develop abilities and skills that are relevant to the study and practice of Science	
PEO-5	To develop abilities and skills those are useful in everyday life.	
PEO-6	To develop attitudes relevant to Science such as accuracy, precision, integrity,	
	enquiry, initiative, inventiveness.	
PEO-7	Content for chemistry students, designed to complement lecture material with a	
	focus on the application of computational chemistry.	
PEO-8	To introduce students to the field of bio-inorganic chemistry, which is increasingly	
	relevant due to the growing role of metals in medicine.	
PEO-9	To acquaint students with the synthesis, including polynuclear compounds,	
	heterocyclic compounds, reagents in organic synthesis, and basic concepts of	
	supramolecular chemistry.	
PEO-10	To enable students to understand polymerization kinetics and thermodynamics, the	
	course will cover various techniques for determining molecular mass and the	
	applications of polymers in different fields of life.	

Programme Specific Objectives (PSO)

PSO-1	To relate the properties, reactions and applications of various chemical entities
	using the theories and principles.
PSO-2	To evaluate various reaction mechanisms to plan routes in the synthesis.
PSO-3	To choose the right modus operandi for reactions and processes in the laboratory
	with safety and environmental security.
PSO-4	To comprehend the mathematical and physical basis of the behaviour of chemical
	species and processes.
PSO-5	To develop analytical and problem solving skills.

Programme Outcome (PO)

PO-1	To apply knowledge obtained in Chemistry lecture to problem-solving and critical	
	thinking.	
PO-2	To utilize mathematical knowledge gained from Chemistry to perform common	
	calculations, including mass balance, limiting reagent, percentage yield.	
PO-3	To maintain scientific notebook using notional and descriptive content of	
	information on reagents, procedures and data.	
PO-4	To characterize chemical samples by physical, chemical and spectroscopic means.	
PO-5	To clear competitive examinations such as GATE / NET / SET etc.	
PO-6	To acquire sound basics to continue Chemistry related higher studies or research	
	and employment.	
PO-7	They will develop skills in using scientific instruments, planning, and conducting	
	laboratory experiments.	
PO-8	Students will develop a scientific mindset and gain the necessary skills for success	
	in research or the industrial sector.	
PO-9	Students will be able to think creatively to propose novel ideas for explaining facts	
	and figures or providing new solutions to problems in chemistry.	
PO-10	Students will design solutions for environmental issues such as global warming,	
	climate change, acid rain, and ozone depletion, and raise awareness in society.	

Programme Specific Outcome (PSO)

PSO-1	Students will gain an understanding of basic scientific concepts, fundamental	
	principles, and scientific theories as they relate to various phenomena in	
	everyday life.	
PSO-2	They will also acquire knowledge about the fundamentals and applications of	
	chemical and scientific theories.	
PSO-3	Students will discover that Chemistry is interconnected with every branch of	
	science and technology, fostering a scientific perspective not only in science	
	subjects but also in all aspects of life.	
PSO-4	Students will gain familiarity with various branches of chemistry, including	
	analytical, organic, inorganic, physical, environmental, polymer, and	
	biochemistry	
PSO-5	Students will learn how to apply appropriate techniques for qualitative and	
	quantitative chemical analysis in laboratories and industries.	

Eligibility for admission

A candidate who is a B.Sc. graduate of this University or any other recognised University in the main subject(s) mentioned or who has passed an examination accepted by the Syndicate as equivalent thereto is eligible for admission to M.Sc. Chemistry programme:

- B.Sc., Degree with Chemistry / Industrial Chemistry / Applied Chemistry / any other specialization in Chemistry as main subject of study and
- Any two of Mathematics, Physics, Botany, Zoology, Computer Application, Microbiology, Applied Chemistry as ancillary subjects.

The admission is subject to the prevailing rules and regulations for PG admission of this University. The candidate has to undergo this programme in the Department of Industrial Chemistry, Alagappa University and complete all the examinations prescribed under the four semesters to qualify for this degree.

Minimum duration of the programme

The programme is for a period of two years. Each year shall consist of two semesters viz. odd and even semesters. Odd semester shall be from July to Oct./Nov. and even semester shall be from Dec. to Apr./May. In each semester, there shall be 90 working days consisting of 6 teaching hours per working day (5 days/week).

Components

A PG programme consists of a number of courses. The term "course" is applied to indicate a logical part of the subject matter of the programme and is invariably equivalent to the subject matter of a "paper" in the conventional sense. The following are the various categories of the courses suggested for the PG programmes:

Core courses (CC): they relate to the programme concerned including practicals and project work offered under the programme and shall cover core competency, critical thinking, analytical reasoning, and research skill.

Discipline-Specific Electives (DSE): the courses offered under the programme relate to the major, but are to be selected by the students, shall cover additional academic knowledge, critical thinking, and analytical reasoning.

Non-Major Electives (NME): Exposure to knowledge beyond the discipline. Students have to undergo a total of 2 Non-Major Elective courses with 2 credits each offered by other Departments (one in II Semester, another in III Semester). A uniform time frame of 3 hours on a common day (Tuesday) shall be allocated for the Non-Major Electives. NME courses offered by the Departments pertaining to a semester should be announced before the end of previous semester. Students have to register for the NME course within 15 days from the commencement of the semester either in the Department or NME portal (University Website).

Self Learning Courses (SLC): They are available from SWAYAM platform. Massive Open Online Courses (MOOCs) shall be voluntary for the students. Students have to undergo a minimum of 2 Self Learning Courses (MOOCs) one in semester II and another in semester III. The actual credits earned through MOOCs shall be transferred to the credit plan of programme as extra credits. Otherwise 2 credits/course be given if the Self Learning Course (MOOCs) is without credit.

Preference shall be given to the course related to employability skills while selecting the MOOCs.

Project work or Internship:The student shall undertake the project work or internship during the fourth semester.

Project work: The candidate shall undergo Project Work during the final semester. The candidate should prepare a scheme of work for the project and should get approval from the supervisor allotted. The candidate, after completing the project work, shall be allowed to submit it to the Department at the end of the final semester. If the

candidate is desirous of availing the facility from other Departments / Universities / Research laboratories / organizations, they will be permitted only after getting approval from the supervisor and Head of the Department. In such a case, the candidate shall acknowledge the same in their project work.

Format of the project report

Title page Certificate Acknowledgment Content as under:

Chapter	Title	Page number
1	Introduction	
2	Aim and objectives	
3	Review of literature	
4	Materials and methods	
5	Result	6
6	Discussion	6:
7	Summary	
8	References	

Project Work Title

Project Work Report submitted in partial fulfillment of the requirement for the award of degree of Master of Science to the Alagappa University, Karaikudi.

By (Student Name) (Register Number)

University Logo

Department of Industrial Chemistry Alagappa University (A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle and Graded as Category-I University by MHRD-UGC) Karaikudi – 630003

(Year)

Certificate from the Supervisor

This is to certify that the Project work entitled "------" is submitted to Alagappa University, Karaikudi in partial fulfillment for the award of degree of Master of Science in Chemistry by Mr/Ms ------(Reg No: -----) under my supervision. This report is based on the results of studies carried out by the student in the Department of Industrial Chemistry, Alagappa University, Karaikudi. This Project or any part of this work has not been submitted elsewhere for any other degree, diploma, fellowship, or any other similar titles or record of any University or Institution.

Place: Karaikudi Date: _____

Certificate from the Head of the Department

This is to certify that the project work entitled "------" submitted by Mr/Ms ------(Reg No: -----------) to the Alagappa University, in partial fulfillment for the award of the degree of Master of Science in Chemistry is a bonafide record of project work done under the supervision of Dr.-----, Department of Industrial Chemistry, Alagappa University. This is to certify further that the project work or any part thereof has not formed the basis of the award to the student of any degree, diploma, fellowship, or any other similar title of any University or Institution.

Place: Karaikudi Date: _____

Head of the Department

Declaration by the student

I hereby declare that the project work entitled "------"submitted to the Alagappa University for the award of the degree of Master of Science in Chemistry has been carried out by me under the guidance of Dr.----------, Department of Industrial Chemistry, Alagappa University, Karaikudi. This is my original and independent work and has not previously formed the basis of the award of any degree, diploma, associateship, fellowship, or any other similar title of any University or Institution. Place: Karaikudi

Date:

Student

Supervisor

Internship: Students who have opted for an Internship must undergo industrial / Research training to accrue industrial / Research knowledge in the final semester. The student have to find the industry (Public / Private / NGO etc.,) related to their discipline in consultation with the supervisor allotted and get approval from the Head of the Department and Departmental Committee before going for an internship.

Title of internship

Internship report submitted in partial fulfillment of the requirement for the award of Master of Science in Chemistry to the Alagappa University, Karaikudi

> By (Student Name) (Register Number)

University Logo

Department of Industrial Chemistry Alagappa University (A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle and Graded as Category-I University by MHRD-UGC) Karaikudi - 630003.

(Year)

Certificate from the Faculty/Staff in-charge

Place:

Date: _____

Faculty/Staff in-charge

Certificate from the Head of the Department

This is to further certify that the Internship Report or any part thereof has not formed the basis of the award to the student of any degree, diploma, fellowship, or any other similar title of any University or Institution.

Place: Karaikudi Date:

Head of the Department

Certificate from the Industry / Organization

This is to certify that the Internship report entitled "------" submitted to Alagappa University, Karaikudi in partial fulfillment for the award of Master of Science in Chemistry by Mr/Ms------ (Reg No: -----) under my supervision. This is based on the internship carried out by the candidate in our organization M/s ------during the period from ------ to ------. This Internship report or any part of this work has not been submitted elsewhere for any other degree, diploma, fellowship, or any other similar record of any University or Institution.

Place:

Date: _____

Representative of the Industry / Organization

Declaration by the student

Place: Karaikudi

Date:

Student

Content		
Chapter	Title	Page number
1	Introduction	
2	Aim and objectives	
3	Profile of the Industry / Organisation	
4	Nature of Internship (Method / Work)	
5	Observation and knowledge gained	
6	Summary and outcome of the Internship	
7	References	
-		

Acknowledgment

No. of copies of the project report/ internship report: The candidate should prepare three copies of the project report / internship report and submit the same to the Department for the evaluation. After evaluation, one copy will be retained in the Department library, one copy will be retained by the supervisor and the student shall hold one copy.

Teaching methods.

The classroom teaching would be through conventional lectures and use of Power-Point-presentations and smart classroom facilities. The lecture would be such that the student should participate actively in the discussion. Student seminars would be conducted and scientific discussions would be arranged to improve their communicative skill. In the laboratory, instruction would be given for the experiments followed by demonstration and finally the

students have to do the experiments individually. Periodic tests would be conducted. For the students of slow learners, special attention would be given.

Attendance

Students must have earned 75% attendance in each course for appearing for the examination. Students who have earned 70-74% attendance need to apply for condonation in the prescribed form with the prescribed fee. Students who have earned 60-69% attendance need to apply for condonation in the prescribed form with the prescribed fee along with the Medical Certificate. Students who have below 60% attendance are not eligible to appear for the End-Semester Examination. They shall re-do the semester(s) after completion of the programme.

Examination

The examinations shall be conducted separately for theory and practical to assess (remembering, understanding, applying, analysing, evaluating, and creating) the knowledge required during the study. There shall be two systems of examinations viz., internal and external. The internal examinations shall be conducted as Continuous Internal Assessment (CIA) Test-I and Test-II.

Internal Assessment

The internal assessment shall comprise a maximum of 25 marks for each subject. The following procedure shall be followed for awarding internal marks.

Theory - 25 marks

Sl.No	Content	Marks
1	Average marks of two CIA test	15
2	Seminar/group discussion/quiz	5
3	Assignment/field trip report/case study report	5
	Total	25

Practical - 25 marks

Sl.No	Content	Marks
1	Major Experiment	10
2	Minor Experiment	5
3	Spotter (2x5) or any other mode	10
	Total	25

Project/ Internship - 50 Marks (assessed by Faculty in-charge / HoD / Supervisor)

Sl.No	Content	Marks
1	Two presentations (mid-term)	30
2	Progress report	20
	Total	50

External Examination

There shall be examinations at the end of each semester, for odd semesters in the month of Oct./Nov.; for even semesters in the month of Apr./May. A candidate who does not pass the examination in any course(s) may be permitted to appear in such failed course(s) in the subsequent examinations to be held in Oct./Nov. or Apr./May.

However, candidates who have arrears in Practical shall be permitted to take their arrear Practical examination only along with Regular Practical examination in the respective semester. A candidate should get registered for the first semester examination. If registration is not possible owing to shortage of attendance beyond condonation limit / regulation prescribed or belated joining or on medical grounds, the candidate is permitted to move to the next semester. Such candidate shall re-do the missed semester after the completion of the programme.

For the Project Report/ Internship, the maximum marks will be 100 marks for project report evaluation and 50 marks for the Viva-Voce.

Viva-Voce: Each candidate shall be required to appear for Viva-Voce Examination (in defense of the Project work / Internship).

Scheme of External Examination (Question Paper Pattern) Theory - Maximum 75 Marks

Section	10 questions. All questions carry equal marks	10x1=10	10 questions
A	(objective type questions)	ective type questions) Marks (2 from each unit	
Section	5 questions. Either or type like 1.a (or) b.	5x5=25	5 questions.
В	All questions carry equal marks.	marks	(1 from each unit)
Section	5 questions. Either or type like 1.a (or) b.	5x8=40	5 questions.
С	All questions carry equal marks	marks	(1 from each unit)

Practical - Maximum 75 Marks

Section A	Major experiment	15 Marks
Section B	Minor experiment	10 Marks
Section C	Experimental setup	<mark>5 Mark</mark> s
Section D	Spotters (5x5 marks)	25 Marks
Section E	Record note	10 Marks
Section F	Viva-voce	10 Marks

Project report/ Internship report - Scheme of evaluation

Project report/ Internship report	100 Marks
Viva-voce	50 Marks

Results

The results of all the examinations will be published through the Department where the student underwent the course as well as through University Website.

Passing minimum

- A candidate shall be declared to have passed in each course if he/she secures not less than 40% marks in the End Semester Examinations and 40% marks in the Internal Assessment and not less than 50% in the aggregate, taking Continuous Assessment and End Semester Examinations marks together.
- The candidates not obtained 50% in the Internal Assessment are permitted to improve their Internal Assessment marks in the subsequent semesters (2 chances will be given) by writing the CIA tests and by submitting assignments.

- Candidates, who have secured the pass marks in the End-Semester Examination and in the CIA but failed to secure the aggregate minimum pass mark (ESE + CIA), are permitted to improve their Internal Assessment mark in the following semester and/or in University examinations.
- A candidate shall be declared to have passed in the Project / Internship if he/she gets not less than 40% in each of the Project / Internship Report and Viva-Voce and not less than 50% in the aggregate of both the marks for Project Report and Viva-Voce.
- A candidate who gets less than 50% in the Project / Internship Report must resubmit the Report. Such candidates need to take again the Viva-Voce on the resubmitted Project report.

Grading of the Courses

The following table gives the marks, Grade points, Letter Grades and classifications meant to indicate the overall academic performance of the candidate.

RANGE OF MARKS	GRADE POINTS	LETTER GRADE	DESCRIPTION
90 - 100	9.0 - 10.0	0	Outstanding
80 - 89	8.0 - 8.9	UNIVERS D+	Excellent
75 - 79	7.5 – 7.9	D	Distinction
70 - 74	7.0 - 7.4	A+	Very Good
60 - 69	6.0 - <mark>6</mark> .9	A	Good
50 - 59	5.0 - 5.9	В	Average
00 - 49	0.0	U	Re-appear
ABSENT	0.0	AAA	ABSENT

Conversion of Marks to Grade Points and Letter Grade (Performance in Paper / Course)

- a) Successful candidates passing the examinations and earning GPA between 9.0 and 10.0 and marks from 90 100 shall be declared to have Outstanding (O).
- b) Successful candidates passing the examinations and earning GPA between 8.0 and 8.9 and marks from 80 -89 shall be declared to have Excellent (D+).
- c) Successful candidates passing the examinations and earning GPA between 7.5 7.9 and marks from 75 79 shall be declared to have Distinction (D).
- d) Successful candidates passing the examinations and earning GPA between 7.0 7.4 and marks from 70 74 shall be declared to have Very Good (A+).
- e) Successful candidates passing the examinations and earning GPA between 6.0 6.9 and marks from 60 69 shall be declared to have Good (A).
- f) Successful candidates passing the examinations and earning GPA between 5.0 5.9 and marks from 50 59 shall be declared to have Average (B).
- g) Candidates earning GPA between 0.0 and marks from 00 49 shall be declared to have Re-appear (U).
- h) Absence from an examination shall not be taken as an attempt.

From the second semester onwards, the total performance within a semester and continuous performance starting from the first semester are indicated respectively by Grade Point Average (GPA) and Cumulative Grade Point Average (CGPA). These two are calculated by the following formulate

GRADE POINT AVERAGE (GPA) = $\Sigma_i C_i G_i / \Sigma_i C_i$

GPA = <u>Sum of the multiplication of Grade Points by the credits of the courses</u> Sum of the credits of the courses in a Semester

Classification of the final result

CGPA	Grade	Classification of Final Result
9.5 - 10.0	0+	First Class – Exemplary*
9.0 and above but below 9.5	0	
8.5 and above but below 9.0	D++	First Class with Distinction*
8.0 and above but below 8.5	D+	
7.5 and above but below 8.0	D	
7.0 and above but below 7.5	A++	First Class
6.5 and above but below 7.0	A+	
6.0 and above but below 6.5	ACO	
5.5 and above but below 6.0	B+	Second Class
5.0 and above but below 5.5	В	000
0.0 and above but below 5.0	U	Re-appear

The final result of the candidate shall be based only on the CGPA earned by the candidate.

- a) Successful candidates passing the examinations and earning CGPA between 9.5 and 10.0 shall be given Letter Grade (O+), those who earned CGPA between 9.0 and 9.4 shall be given Letter Grade (O) and declared to have First Class –Exemplary*.
- b) Successful candidates passing the examinations and earning CGPA between 7.5 and 7.9 shall be given Letter Grade (D), those who earned CGPA between 8.0 and 8.4 shall be given Letter Grade (D+), those who earned CGPA between 8.5 and 8.9 shall be given Letter Grade (D++) and declared to have First Class with Distinction*.
- c) Successful candidates passing the examinations and earning CGPA between 6.0 and 6.4 shall be given Letter Grade (A), those who earned CGPA between 6.5 and 6.9 shall be given Letter Grade (A+), those who earned CGPA between 7.0 and 7.4 shall be given Letter Grade (A++) and declared to have First Class.
- d) Successful candidates passing the examinations and earning CGPA between 5.0 and 5.4 shall be given Letter Grade (B), those who earned CGPA between 5.5 and 5.9 shall be given Letter Grade (B+) and declared to have passed in Second Class.
- i) Candidates those who earned CGPA between 0.0 and 4.9 shall be given Letter Grade (U) and declared to have Re-appear.
- e) Absence from an examination shall not be taken as an attempt.

CUMULATIVE GRADE POINT AVERAGE (CGPA) = $\Sigma_n \Sigma_i C_{ni} G_{ni} / \Sigma_n \Sigma_i C_{ni}$

CGPA = <u>Sum of the multiplication of Grade Points by the credits of the entire Programme</u> Sum of the credits of the courses for the entire Programme Where 'Ci' is the Credit earned for Course i in any semester; 'Gi' is the Grade Point obtained by the student for Course i and 'n' refers to the semester in which such courses were credited.

CGPA (Cumulative Grade Point Average) = Average Grade Point of all the Courses passed starting from the first semester to the current semester.

Note: * The candidates who have passed in the first appearance and within the prescribed Semesters of the PG Programme are alone eligible for this classification.

Maximum duration of the completion of the programme

The maximum period for completion of M.Sc. Chemistryprogramme shall not exceed eight semesters continuing from the first semester.

Conferment of the Master's Degree

A candidate shall be eligible for the conferment of the Degree only after he/she has earned the minimum required credits for the programme prescribed (i.e. 90 credits).

Village Extension Programme

Alagappa University has jurisdiction with two districts such as Sivaganga and Ramanathapuram. These districts are said to be economically and educationally backward. As a social responsibility, Village Extension Programme (VEP) is being arranged annually by conducting outreach activities such as environmental awareness, hygiene and health to the rural people in this region. Students in their third semester have to visit the designated (adopted) village within the jurisdiction of Alagappa University and to engage themselves in the VEP to serve the rural mass for three days. A minimum of two faculty members can accompany the students and guide them.

Sl. No.	Course Code	CourseTitle of the CourseCodeTitle of the Course			Hours / Week		Marks	5
		I Semester				CIA	ESE	Total
1	536101	Core 1 Inorganic Chemistry-I	Т	5	5	25	75	100
2	536102	Core 2 Organic Chemistry-I	Т	5	5	25	75	100
3	536103	Core 3 Physical Chemistry-I	Т	5	5	25	75	100
4	536104	Core 4 Inorganic Chemistry - Practical	Р	5	8	25	75	100
5	536052	DSE-1	Т	4	4	25	75	100
		Library/Yoga/ counseling/ Field-trip			3			
			24	30	125	375	500	
		II Semester						
	536201	Core 5 Inorganic Chemistry-II	Т	5	5	25	75	100
7	536202	Core 6 Organic Chemistry-II	Т	5	5	25	75	100
8	536203	Core 7 Physical Chemistry-II	Т	5	5	25	75	100
9	536204	Core 8 Organic Chemistry - Practical	Р	5	8	25	75	100
10	536051	DSE-2	Т	4	4	25	75	100
11	536701	NME-1	Т	2	3	25	75	100
12	SLC	MOOCs			Extra credit			
		Total	2	26	30	150	450	600
		III Semester	2					
13	536301	Core 9 Advanced Inorganic Chemistry	Т	5	5	25	75	100
14	536302	Core 10 Advanced Organic Chemistry	Т	5	5	25	75	100
15	536303	Core 11 Advanced Physical Chemistry	Т	5	5	25	75	100
16	536304	Core 12 Physical Chemistry - Practical	Р	5	8	25	75	100
17	536053	DSE-3	Т	4	4	25	75	100
18	536702	NME-2	Т	2	3	25	75	100
19	SLC	MOOCs			Ext	ra crec	lit	
	Total				30	150	450	600
		IV Semester	13					
20	536401	Core 13 Project Work / Internship		15	30	50	150	200
		Total		15	30	50	150	200
		CAPID EXCLUSION						
		Grand Total		91 +		475	1425	1900

M.Sc. Chemistry Programme Structure

CIA: Continuous Internal Assessment; ESE: End-Semester Examination; DSE: Department Student Elective; NME: Non-Major Elective; SLC: Self-Learning Course; MOOC: Massive Open Online Course; T:Theory; P: Practical

Department Student Elective Courses

Course Code	Course Title
536051	Natural Products and Introductory Biochemistry
536052	Instrumental Methods of Analysis
536053	Spectroscopic Methods of Analysis
536054	Environmental and Green Chemistry
536055	Materials Chemistry
536056	Chemical and Electrochemical Energy Systems

Non-Major Elective Courses for Other Department Students

Course Code	Course Title
536701	Chemistry in Everyday Life
536702	Basics in Environmental Science

Semester – I						
Core	C	ourse Code:	Inorganic Chemistry - I	T	Credits: 5	Hours: 5
		536101				
			UNIT – I			
Obje	ctive 1	 To familiarize bonding. 	basic information about che	emical	periodicity,	structure and
Structu	re and Ro	nding Concent of	f Acid and Bases			
Chemic	al periodi	city_periodic_trend	s Concept of hybridization	-Mole	cular orbita	ls electronic
configu	ration of h	nomo-nuclear and h	netero-nuclear diatomic mole	ecules	Shapes of	polyatomic
molecul	les-VSEPI	R theory Bond	order and magnetism Typ	nes o	f chemical	bonds-Inter
molecul	lar Forces	- Dipole Moment	-Lattice energy – Born Lan	d Eau	ation-Born	Haber cycle
Bronste	and Lev	vis concept of acid	Is and bases Hard and Soft	Acid	and Bases	(HSAR)
Principl	le - annlic	ations - limitations	is and bases. That's and both	11010	and Duses	(115/115)
1 meipi	ie upplie	Learners unde	rstand the fundamental	1 c	ncents o	f K2
Outc	come 1	Predict the shape	and chemical bonding and F	Rorn F	Jaber cycle	
		Treater the shape	UNIT _ II	J 0111 1	laber eyere.	
		> To provide tec	chnical knowledge in valence	- hond	theory cry	stal field
Obje	ctive 2	theory and spe	ectrochemical series.	2 UUIIC	r theory, ery	star metu
Coordi	nation Co	mpounds-I	AGAPPA UNIVERSITY			
Valence	Bond The	eory-octahedral, sq	uare planar and tetrahedral c	omple	exes- limitat	ions of VBT;
Crystal	Field The	ory-splitting of d-o	orbitals in square planar, trig	gonal	bipyramida	, octahedral,
tetrahed	ral compl	exesFactors affe	ecting the magnitude of 10	Dq,	spectro che	mical series,
crystal f	ield stabili	zation energy of oc	ta <mark>he</mark> dral and <mark>te</mark> trahedral com	plexe	s-distortion	of octahedral
complex	kes-Jahn-T	eller distortion, ap	plic <mark>ations of C</mark> FT; Spinels-st	tructu	re, classifica	tion and site
selection	n.					
Outc	come 2	Students discuss	the structure and stability of	comp	lexes.	K3
			UNIT – III			
Obje	ctive 3	> To educate on	n recent developments in co	o-ordi	nation comp	oounds, VBT,
Coordi	C.		l.			
Coordi	nation Co	mpounds-11 Theory signed and	lui haudina in aatahadual aa		Common	and of VDT
CET	lar Orbital	Ligand Eight The	pi bonding in octanedral co	mplex	es. Compar	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$
CFI an	ia MOT.	Ligand Field Ine	r lon and somi amnimical mat	theor	y beyond I	MOT (LFT),
Extende	a nucker	Lineory, angular over	r lap and semi empirical meu	nods.		17.4
Outc	come 3	compounds, VBT	T, CFT and MOT.	co-0	rdination	K4
			UNIT – IV			
Obje	ctive 4	To learn the s AB2 type of c	structure of ionic crystals, so crystals.	lid sta	te chemistry	, AB and
Solid S	tate Chen	nistry				
Packing	g of ions in	HCP, FCC and B	CC structure-determination of	of pacl	king fractior	in SC,BCC,
FCC an	Id HCP str	ructure-density of c	cubic crystals; limiting radiu	s ratio	o of trigonal	, tetrahedral,
octahed	ral and cu	bic site-its influenc	e on ionic structures; structu	re of i	onic crystal	s - AB type
					~	~ 1

		Course desig	gned by Dr.G.	Gopu & Dr.N. S	engottuvelan
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
o-8d23eiwGY	7Sr	-			
https://www.yo	outube.com/watch?v	v=ecn8bPDV	6Sc&list=PLfI	FNJ1DPG4mPl_4	FP2
http://www.ad	ichemistry.com/inor	rganic/p-bloc	k/group-14/sili	cates/silicates-1.h	tml
properties/x2e	ef969c74e0d802:vs	epr/v/vsepr-fe	or-2- electron-o	clouds	
beta/x2eef9696	c74e0d802:molecula	ar- and-ionic-	compound-stru	icture-and-	
https://www.kl	hanacademy.org/sci	ence/ap-chem	nistry-		
https://ncert.ni	c.in/textbook/pdf/ke	ech103.pdf			
Online Resource	es:				
Kettles,S.F.A. (1996). Physical Ino	rganic Chem	istry. Springer.		
Westar.(1984).	Solid State Chemist	ry and its Ap	plications. Wil	ey, New York.	
Chemistry(Vol 1	l& II). NewDelhi.				
Sathyaprakash,T	uli,G.D.,Basu,S.K.,N	Madan,R.D.,C	hand,S.&Co.(20	011). Advanced Ino	organic
Willam,L.(2007	7). Modern Inorgani	ic Chemistry(2 nd ed.). McGr	aw-Hill.	
ed.), JohnWiley	<i>.</i>				
Cotton,F.A.,Wil	kinson,G.,Murillo,F.	A., <mark>Bochmann</mark>	,M.(2007). Adv	anced Inorganic Cl	hemistry (6 ^{––}
oj siruciure and	a Reactivity (4ed.)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	on, Pearson-Ed	ucation.	th
of Structure and	d Reactivity (1that)	5thImprosei	n Degraan Ed	ucation	
Huheev.J.EKe	iter.E.AKeiter.R I	Methi.O.K.	(2009). Inorgan	nic Chemistrv-Priv	ncinle
De. A.K.(2003)	. A TextBook of Ino	rganic Chem	istry.(9 th ed.) N	AIP.	
Edu.India.		GAPPA UNIVE	RSITY	· · · · · · · · · · · · · · · · · · ·	
Miessler.G.L I	Fischer, P.J., Tarr.D.	A.(2013). Inc	organic Chemi	stry (5 th ed.). Perso	on
Chemistry.	i internet	L'Unon co co		1 0	2
WahidMalik,U.,	Tuli,G.D.Madan,R.D	.,Chand,S.&C	Co.,(2014).Selec	eted Topics in Inors	ganic
Suggested Read	ings:				
	and actinides.	e furdate tile			110
Outcome 5	Learners critically	evaluate the	recent trends in	1 lanthanide	K6
magnetic propertie	es-comparative acco	ount of lantha	nides and actin	ides.	spectralation
elements-nosition	in the periodic table	electronic c	onfiguration at	and oxidation states	s-spectraland
states- size relati	ousnips-ianthanide	-contraction	spectral and 1	magnetic properti	Synthesis of
Lanthanides- occi	urrence, position in	n the period	1c table- elect	ronic configuration	on-oxidation
Chemistry of Lar	nthanides and Acti	nides	• . 1 1 1	• • • • •	• 1 .•
Objective 5	To educate the rec	ent technique	es in lanthanide	and actinides.	
		UNIT-V	7		
Outcome 4	Learns acquire k	nowledge on	structure of sc	olids.	K5
covalent crystals -	- graphile and diam	ond.			
crystals-Fluorite,	Rutile and Calcium	carbide; A2E	B type of crysta	ls Anti-fluorite; st	ructure of
of crystals -Sodiu	m chloride, Zinc b	lende, Wurtz	ite and Cesium	n chloride - AB2	type of
	11 11			11.11.4.Da	

Course Outcome Vs Programme Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	L(1)	M(2)	S(3)	M(2)
CO3	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO5	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)
W.AV	2.4	2.8	2.6	2.4	2.2	3	1.6	2.4	2.2	1.6

S - Strong (3), M - Medium (2), L - Low (1)

Course Outcome Vs Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	<mark>S(</mark> 3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	M(2)	S(3)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)
W.AV	3	2.8	3	2.4	2.6

S - Strong (3), M - Medium (2), L - Low (1)

Semester – I									
Core		Course Code:	Organic Chemistry - I	Т	Credits: 5	Hours: 5			
		536102							
			UNIT – I						
		➤ Understand the fu	indamental concepts of inductiv	ve eff	fect, resonance	effect, and			
Objective 1 Introductory	other electron effects, along with their role in chemical reactions.								
		> Master the IUPAC nomenclature rules for complex compounds like bicyclic							
		and heterocyclic s	structures, enhancing naming ac	curac	ey.				
Introdu	ctory	concepts and Reacti	on Mechanism						
Basic co	ncep	ts: Inductive effect, o	electromeric effect, resonance	effec	t, hyper conju	igation, the			
formalis	n of	curved arrow mech	nanisms. IUPAC nomenclatur	e: Bi	icyclic, polyc	yclic, spiro			
compour	nds a	nd heterocyclic comp	ounds. Aromaticity: concept of	f aror	naticity, deloc	alization of			
electrons	-Hüc	kel's rule, criteria f	or aromaticity, examples of	neutra	al and charge	d aromatic			
systems-	annu	lenes-NMR as a tool	for aromaticity- anti- and hom	o-aro	matic systems	- fullerenes			
$(C_{60}).$									
		By the end of thi	s unit, students should be ab	le to	: Demonstrate	a K2			
Outcom	. 1	comprehensive und	lerstanding of electron effect	ts an	d their roles	in			
Outcom	le I	chemical reactions, enabling analysis of reaction mechanisms and							
		reactivity patterns.							
			UNIT – II						
		Develop the	ability to propose reaction med	chanis	sms using ener	rgy profiles			
		and intermediate species, deepening understanding of reaction pathways.							
Objectiv	ve z	> Grasp the concept of kinetic and thermodynamic control, along with							
		methods to de	etermine reaction mechanisms,	foster	ing mechanist	c insight			
Physical	Org	anic Chemistry							
Determin	nation	n of reaction mechanis	m: Factors affecting the strengt	h of a	acids and bases	, Bronsted			
and Lew	is co	ncepts of acids and ba	ses. Guidelines to propose a rea	asona	ble reaction m	echanism–			
Energy	profil	e, intermediate, trans	sition state-kinetic and thermo	odyna	mic control –	Hammond			
postulate	-met	thods of determining r	eaction mechanism-kinetic me	thods	– primary and	secondary			
kinetic is	sotop	ic effect-nonkinetic m	nethods. Mechanism according	to fre	e energy corre	elation and			
correspo	nden	ce with theory of orbi	ital interaction. Linear free ene	rgy r	elationship-Cu	ırtin-			
Hammet	t prin	ciple-significance of	sigma and rho–Hammett and Ta	aft eq	uations.				
		By the end of this u	nit, students should be able to:]	Form	ulate and prop	ose K3			
Outcom	e 2	reaction mechanism	is based on energy profiles and	trans	sition states,				
		showcasing proficie	ency in analyzing reaction pathy	vays.					
			UNIT - III						
		> Acquire master	y over the mechanisms and st	tereod	chemistry of r	ucleophilic			
		substitution read	tions (S_N1 and S_N2), connecting	g stru	cture to reactiv	vity.			
Objectiv	ve 3	➤ Understand the	competition between eliminat	ion a	nd substitution	n reactions,			
		focusing on fact	ors governing E_1 , E_2 and E_1CB	mech	anisms.	,			
		6							
Substitu	tion	and Elimination Rea	ctions						
Aliphatic	: Nuc	leophilic Substitution	: S _N 1 and S _N 2 mechanisms-kin	etic a	nd stereochem	ical			
1		1	- '						

features-Neighbouring group participation and nature of nucleophile, solvent polarity, leaving

group ability on the course of the reactions– S_NI reaction-Allylic and vinylic substitution. Aliphatic electrophilic substitution: Mechanism of aliphatic electrophilic substitution reactions– S_E1 , S_E2 and S_EI mechanisms. Elimination Reactions: E_1 , E_2 , E_1CB mechanisms-Stereochemistry of elimination-Hofmann and Zaitsev rules-competition between elimination and substitution. Bredt's rule. Aromatic Electrophilic Substitution: The arenium ion mechanism, Friedel-Crafts alkylation, acylation and diazonium coupling, orientation and reactivity. Aromatic Nucleophilic substitution: The benzyne intermediate mechanism, aromatic nucleophilic substitution of activated halides-Ziegler alkylation.

	By the end of this unit, students should be able to: Predict and explain	K4						
Outcome 3	theoutcomes of substitution and elimination reactions, utilizing							
	knowledge of mechanisms, stereochemistry, and reaction competition.							
UNIT - IV								
	 Grasp the principles of configuration, conformation, and chirality, e 	nabling						
Objective 4	accurate determination of stereoisomeric relationships.							
	Become proficient in using projection methods and nomenclature	rules to						
	define absolute configuration and diastereoisomers							
Fundamenta	ls of Stereochemistry							
Introduction	to molecular symmetry and chirality-axis, plane, centre, alternating a	axis of						
symmetry. St	ereoisomerism-definition based on symmetry and energy criteria-configurat	ion and						
conformation	al stereoisomers. Center of chirality-molecules with C, N,S based chiral	centers-						
absolute cor	ifiguration-Sawhorse, Fischer and Newman projections, interconvers	ion of						
projections-er	antiomers-racemic modifications-R and S nomenclature using Cahn-Ingold	l-Prelog						
rules-molecul	es with a chiral center and Cn-molecules with more than one center of cl	hirality-						
definition of	diastereoisomers-constitutionally symmetrical and unsymmetrical chiral mol	lecules-						
erythro and th	<i>reo</i> nomenclature-E and Z nomenclature-out/in isomers.							
	By the end of this unit, students should be able to: Apply principles	K4						
Outcome 4	of symmetry, chirality, and stereoisomerism to accurately describe and							
	predict the configurations and relationships of complex molecules.							
	UNIT - V							
	> Explore the conformational analysis of molecules, recognizing the ef	fects of						
Objective 5	steric and electronic influences on reaction outcomes.							
Objective 5	> Understand how conformational insights contribute to reaction mech	anisms,						
	emphasizing neighboring group participation and reactivity outcomes.							

Conformational analysis and Reactivity

Conformational analysis: Introduction to conformational analysis, steric, electronic and stereoelectronic effects in governing the conformation of acyclic and cyclic (5 and 6 membered rings) systems, A-strains and anomeric effect, decalins, transannular interactions in medium size rings. Conformation and reactivity: steric and electronic effects in syn-elimination, E2 elimination and neighboring group participation (Woodward, Prevost methods) of acyclic and cyclohexyl systems, esterification, substitution reaction and formation and opening of epoxide in cyclohexyl systems (Furst Plattner rule).

Outcome 5By the end of this unit, students should be able to: Assess and predict the
conformational effects on reactivity, enabling strategic analysis of
reaction outcomes and product formation.K3

Suggested Readings:

Morrison, R. T., Boyd's, R. N. (2008). Organic Chemistry (6th ed.). Springer. Micheal B. Smith, jerry March's. (2007). Advanced Organic Chemistry Reactions, *Mechanismand Structure*. (6th ed.). John Wiley & Sons Inc. New Jersey. Narain, R. P. (2011). Fundamentals of Reaction Mechanisms in Organic Chemistry. PHI Learning Private Limited, New Delhi. Mukherji, S. P., Singh, S. P. (2004). Reaction Mechanism in Organic Chemistry (3rd ed.) Macmillan India Ltd, New Delhi. Finar, I. L. (2004). Organic Chemistry Vol. I & II (5thed.) Pearson Education, Singapore. Kalsi, P. S. (2014). Organic reaction and their Mechanism (2nd ed.). New Age International Private Limited, New Delhi. Francis A. Carey. (2009). Organic chemistry (7thed.) New York. Stevan A. Fleming., Norton, W. W. & Compound. (2010). Organic Chemistry, (4th ed.). London.Harris, J. M., Wamser, C. C. (1976). Fundamentals of Organic Reaction Mechanisms. John Wiley & Sons, New York. Lowry, T. H., Richardson, K. S. (1976). Mechanism and theory in Organic Chemistry. Harperand Row, New York. 1976. Bansal, R. K. (2003). Reaction Mechanism in Organic Chemistry (4th ed.) New Age International. Peter Skyes. (2003). A Guidebook to Mechanism in Organic Chemistry. Orient Longman Private Limited., New Delhi. V.K. Ahluwalia, V. K., Prashar, R. K. (2011). Organic Reaction Mechanisms (4th ed.) AlphaScience International, UK. AMIT Arora. (2003). Aromatic Organic Synthesis. Discovery Private Limited., New Delhi.Badger, G. M. (1969). Aromatic Character and Aromaticity, Cambridge. Garratt, P. J., Mc Graw Hill. (1971). Aromaticity. **Online Resources** https://nptel.ac.in/ https://ocw.mit.edu/ https://www.masterorganicchemistry.com/ https://chem.libretexts.org/Bookshelves/Organic Chemistry https://chemistrynotes.com/pages/organic-chemistry-notes https://www.khanacademy.org/science/organic-chemistry https://www.chemguide.co.uk/ https://commonorganicchemistry.com/ https://www.organic-chemistry.org/ https://hbu.libguides.com/chemistry K1-**K2-Understand** K3-Apply K4-Analyze | K5-Evaluate K6-Create Remember Course designed by Dr. M. Sundrarajan & Dr.S. Viswanathan

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	L(1)	M(2)	S(3)	M(2)
CO3	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO5	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)
W.AV	2.4	2.8	2.6	2.4	2.2	3	1.6	2.4	2.2	1.6

Course Outcome Vs Programme Outcomes

S-Strong (3), M-Medium (2), L-Low (1)

S ALAGAPPA UNIVERSITY

280-

Course Outcome Vs Programme Specific Outcomes

r				1	1
CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)
CO3	S(3)	<mark>S(3</mark>)	S(3)	M(2)	S(3)
CO4	S(3)	M(2)	S(3)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)
W.AV	3	2.8	3	2.4	2.6

S-Strong (3), M-Medium (2), L-Low (1)

			Semester - I	Semester - I								
Core	C	Course code:	Physical Chemistry - I	Т	Credits: 5	Hours:	5					
	5	36103										
	•		UNIT - I									
Objectiv	ve 1	To achieve an	n understanding of the theory of qu	iantui	n mechanics	, and an abilit	y to					
		apply the qua	ntum theory to important physical	syste	ems							
Fundamer	ntal o	of Quantum Che	emistry									
Basic prin	Basic principles of quantum mechanics: Postulates of quantum mechanics, wave functions and											
probabilitie	probabilities, Black-body radiation, Photoelectric effect, Planck's radiation law, Compton effect,											
Atomic hy-	droge	en spectra, The E	Bohr model, Wave-particle duality	of m	aterial partic	les and de Br	oglie's					
hypothesis	, Qua	ntisation of ang	ular momentum, Heisenberg's									
uncertainty	v prin	ciple. Quantum	mechanics: Schrodinger equations,	, Eige	n functions a	nd Eigen valu	ues.					
Outcome	1	The students und	lerstand the fundamental basics of	f quar	ntum mechan	ics and the						
		principles, behav	vior of atoms and molecules. Thi	s kno	owledge is e	ssential for	K2					
		understanding th	e electronic structure, bonding, an	nd va	rious spectro	scopic						
		techniques used	in the field of quantum chemistry.									
	UNIT - II											
Objective	e 2 a	amental principle	es of molecular symmetry and grou	ip the	eory.							
Group Th	eory											
Symmetry	elem	ents and symme	etry operations Centre of symmetr	ry, Pl	ane and its	types of Sym	metry,					
Proper and	l Imp	proper axis of S	ymm <mark>et</mark> ry, Princi <mark>p</mark> al axis and subs	sidiar	y axes. The	concept of g	groups,					
Assigning	Poin	t groups with	illustrative examples, Symmetry	oper	ations and	order of a g	roup -					
Group the	eoreti	cal rules (Gro	up postulates), reducible and	irred	lucible repre	esentations,	matrix					
representat	ions	of symmetry ope	erations, Construction of Character	r Tab	les for C_{2V} a	nd C _{3V} point	group					
molecules,	and	Great orthogonal	lity theorem and its proof.									
Outcome	2 7	To the concept o	f molecular symmetry and the ut	ilizat	ion of group	theory for	K3					
	c	haracterizing and	d analyzing symmetrical properties	s of n	nolecules.							
			UNIT - III			L. L						
Objective	e 3 S	Students with a co	omprehensive understanding of rea	action	kinetics, tra	nsport proper	ties,					
	c	complex reaction	s, unimolecular reactions, and elen	nenta	ry reactions i	n solutions.						
Theories o	of Ch	emical Kinetics										
Theories of	of Re	eaction Rates: R	ate laws and rate constants, react	ion o	order, determ	ination of rat	te law.					
reactions a	appro	aching equilibri	um, temperature dependence of	reacti	on rates, Ar	rhenius parar	neters,					
consecutiv	e ele	ementary reacti	ons, steady-state approximation.	, Kir	netic isotope	effect. Tra	insport					
properties:	Dif	fusion, Thermal	l conductivity, Viscosity, Effusi	ion,	Drift veloci	ty, Nernst-E	instein					
equation,	Stok	es-Einstein equa	ation Complex reactions Chain	reac	tions. Unin	olecular rea	ctions:					
Lindemanr	n- Hi	inshelwood mec	hanism and activation energy o	fac	composite re	action. Elem	entary					
Reactions	Reactions in Solutions: Activated complex theory: Bronsted-Bierrum equation -											
Primary an	d sec	ondary salt effect	ets, Eyring equation.		•							
Outcome	3 7	The students und	erstanding of various aspects rela	ted to	o reaction ki	netics,	K2					
	tı	ransport properti	es, complex reactions, and elemen	tary r	eactions in so	olutions.						

UNIT - IV							
Objective 4	To provide students with a comprehensive understanding of the fundamental principles and concepts of chemical thermodynamics.						

Thermodynamics

Chemical Thermodynamics: Thermodynamic properties, Boyle's Laws, Ideal-gas absolute temperature scale, Reversible and irreversible P-V works, first law of thermodynamics, Joule-Thomson experiments, Second law of thermodynamics, Carnot's principle, Gibbs and Helmholtz energies, The Maxwell relations, Le Chatelier principle. Solids: Thermodynamics of solids - Einstein and Debye models. Metals: Fermi function, Fermi energy, free electron model and density of states,

chemical potential of conduction electrons.

Outcome 4	The student learns, the fundamental principles of thermodynamics and its	K2
	application to gases, solids, and metals, and its relevance to various chemical and	
	physical processes.	

UNIT - V

Objective 5 To provide students brief knowledge about photochemical processes.

Photochemistry and Solar Energy Conversion

Photochemistry: Photochemical laws, Quantum yield, Electronically excited states, Jablonski diagram, Radiation-less processes, Energy level diagrams, Assignment of n, π^* and π , π^* configurations, Forbidden transitions, Fluorescence and Phosphorescence, Emission lifetimes, Mechanism of energy transfer. Marcus theory of electron transfer, Free energy and rate relation, Rehm Weller behaviour, Marcus Inverted Region. Solar energy conversion: Solar cell structure, materials and properties, Solar cell fabrications, Dye sensitized solar

cells, efficiency and measurements.

Outcome 5	Students have gained a comprehensive understanding of photochemistry and its	K5
	applications in areas such as energy conversion and solar cell technology	

Suggested Readings:

Atkins, P., Paula, J. (2014). Physical Chemistry (10th ed.), Oxford University Press, Oxford. Ira Levine, Physical Chemistry, Edition 6, (2011) McGraw Hill Education, New York, United States.

Mc Quarrie, D. A. (1983). Quantum Chemistry. University Science Books.

Cotton, F. A. (1996). Chemical Applications of Group Theory. Wiley.

Laidler, K. J. Harper & Row. (1998). Chemical Kinetics (3rded.). New York.

Enrico Fermi, Thermodynamics, (2010) Snowballpublishing.com, California, USA.

Rohatgi - Mukherjee, K. K. (2014). Fundamentals of Photochemistry. (3rd ed.). New Age International Pvt. Ltd. New Delhi.

N. J. Turro, V. Ramamurthy, J. C. Scaiano, (2010) Principles of Molecular Photochemistry, University Science Books, Sausalito.

Stephen J. Fonash. (2010). Solar Cell Device Physics (2nd ed.). Academic Press is an imprint of Elsevier, Kidlington, Oxford, OX5 1GB.

Online Resour	Online Resources									
Fundamentals of Quantum Chemistry - 2nd Edition (elsevier.com)										
https://people.bath.ac.uk/gt223/MA30237/Inotes.pdf										
https://www.ask soaneemrana.co	https://www.askiitians.com/revision-notes/chemistry/chemical-kinetics/ soaneemrana.com/onewebmedia/Thermodynamics by PK Nag.pdf									
Tresentation on	Presentation on solar energy conversion.pptx (slideshare.net)									
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create										
			Course de	signed by: Dr.T.	Stalin					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	L(1)	M(2)	S(3)	M(2)
CO3	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO5	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)
W.AV	2.4	2.8	2.6	2.4	2.2	3	1.6	2.4	2.2	1.6

Course Outcome Vs Program Outcomes

S-Strong (3), M-Medium (2), L- Low (1)

Course Outcome Vs ProgramSpecific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	L(1)	M(2)	S(3)	M(2)
CO2	S(3)	M(2)	L(1)	M(2)	S(3)
CO3	M(2)	M(2)	S(3)	M(2)	S(3)
CO4	M(2)	S(3)	S(3)	M(2)	L(1)
CO5	S(3)	L(1)	L(1)	M(2)	S(3)
W. AV	2.4	1.8	2	2.2	1.4

S-Strong (3), M-Medium (2), L- Low (1)

Semester - I											
Core	Course Code:	Inorganic Chemistry	P	Credits: 5	Hours: 8						
	536104	Practical									
Ohiective	To get practi	cal skills in (i) EDTA & redox	titratic	ons; (ii) prepa	aration and						
Objective	analysis of co	mplexes; (iii) analysis of a mixture	e conta	ining cations.							
	1.Quantitative	Analysis									
	(a) EDTA ti	trations: (i) Ca, (ii)Mg, (iii)Ni, (iv)) Zn.								
	(b) Redox titrations: Fe (II) Vs Ce (IV), Fe (II) Vs Dichromate,										
	NO ²⁻ Vs Ce (IV)										
	2.Preparation a	and Analysis of Coordination Co	mplex	es							
	a) Preparatio	on of co-ordination complexes	s by	double stag	ge method						
	(AnyFou	ır).									
	b) Charac	terization of prepared complexes:	Solub	ility, Melting	point, UV						
	spectros	spectroscopy, Infrared spectroscopy, Thermal analysis.									
	3. Semi-microqualitative analysis:										
	Analysis of mixtures containing two ions:										
	Less familiar	cations: Ce, W, Mo, Zr, Ti, V, and	l Li.								
	Familiar catio	ons: Pb, Cu, Bi, Cd, Mn, Ni, Co, Zr	n, Ca, I	Ba, Sr and M	g.						
Outcome	The student would	d be able to gain practical knowle	dge in	(i) titrations;							
	(ii) preparation of	of complexes; (iii) identifies fam	iliar a	nd less fami	liar cations						
	form a mixture of	f salts.									
Suggested	Readings:										
Basset, J	., Denney, R.C., Jef	fery G.H., Mendham, J. (1994). <i>V</i>	ogel's	textbook of q	uantitative						
inorganic Dolmor	c analysis. ELBS.	Nostrand Painhald Co. (1072		novimental							
Inorgani	c Chemistry Londo	n	.). Ex	.perimentai							
Grindley	, D.N. (1964). An a	dvanced course in practical Inorga	anic C	hemistry.							
Butterwo	orths.	A STATE OF A		2							
John Ber	nard Ekeley, (2010)	. A Laboratory Manual of Inorgan	nic Ch	emistry. Bibli	io						
Life.			C1	10.0 (100	7)						
Veeraswa	amy, R., Kulandaiv	elu, Ar., Venkateswaran, V., Sulta	nChan	d&Sons (199	/).						
	asic Principles of P	<i>tractical Chemistry (2^{IId}ed.).</i>									
Unline Res	ources:	1.2									
https://www	v.youtube.com/watc	$n = H_3 a Z_A a mu = 0.2 $ $s_{out} = 1$									
https://viab.	amina.euu/:sub=20	$x = 0.01 - 1.91 \times 0.01 = 0.92 \times 0.01 = 1$	nd NU	S Marrial fr	n Inonconi						
c semi-mic	ro qualitative anal	atomat/dept_enemistry/4.1_WIIS_al		S_ivialiual_10							

	PGO1	PGO2	PGO3	PGO4	PGO5	PGO6	PGO7	PGO8	PGO9	PGO10
CO1	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	L(1)	M(2)	S(3)	M(2)
CO3	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO5	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)
W.AV	2.4	2.8	2.6	2.4	2.2	3	1.6	2.4	2.2	1.6

Course Outcome Vs Programme Outcomes

S - Strong (3), M - Medium (2), L - Low (1)

S ALAGAPPA UNIVERSITY

Course Outcome Vs Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	M(2)	S(3)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)
W.AV	3	2.8	3	2.4	2.6

S - S	Strong	(3),	М -	Medium	(2),	L -	Low	(1)
-------	--------	------	-----	--------	------	-----	-----	-----

Semester - II										
Core	Core Course Code: Inorganic Chemistry - II T Credits: 5									
		536201								
UNIT - I										
Obiect	ive 1	Fo familiarize	basic information about struc	eture a	nd bonding i	n inorganic				
rings.										
Main (Group	Elements								
Compo	unds	of alkali and alkali	neearth metals-preparation a	and us	es. Catenatio	on-hetero				
catenat	ion-	intercalation chem	istry-Polyanions and isopol	y ani	ons of Pho	osphorous,				
Vanadi	um, h	eteropoly anions of	f Molybdenum and Tungster	n. Hyd	rides, oxides	s and oxy				
acids o	of nit	rogen, phosphorou	s, sulphur; phosphines, pho	osphaz	ines, sulphu	r-nitrogen				
compou	unds. S	Silicates, borazines a	and boronnitrides-Heterogeno	us cata	alysis–Zeolite	es–				
structur	e and	reactivity.								
Outcon	ne 1	Learners understan	nd the fundamental concepts	of inc	organic ring	K2				
			UNIT - II							
Object	ive 2	> To provide tec	hnical knowledge in cages and	metal	clusters					
Cagos	and N	fotal Clustors	innear knowledge in eages and	meta	Clusters					
Inorger	anu IV.	ietal Clusters	d alustars Chamistry of ho	on ho	rona higher	bornnog				
arboro		Structure and bondi	a in polyhodral horanos and	on-bo	rance motal	loboranes,				
metallo	nes, c	ranes styx notation	· Wada's rule: Jammis MNC		in polyhedro	1 boranes				
alactro		t in polyhodrol bors	, wates full, selling with	alustar	a dipueleer	alustors				
trinuala		lustors	loor clusters hexenucler		s - uniucical	Organia				
Eromov	vork	hasias and application	iear clusters - nexanuclea		ister. Mietai	Organic				
Tamev	VOIK -		5115.	<u> </u>		V2				
Outcor	ne 2	Students discuss th	e cages and metal clusters.			KJ				
			UNIT - III							
	2	To understand	and educate on recent develop	oments	in ligand- Su	ubstitution				
Object	ive 3	in complexes.	-		C					
Ligand	lsubs	titution reactions in	n Complexes							
Types	of su	ibstitution reactions	$S-S_N1$, S_Ni and S_N2 reaction	n mec	hanism in	octahedral				
comple	xes-	aquation, factors	affecting aquation; base	hydrol	ysis, conjug	gate base				
mechar	nism,	anation reactions-su	ibstitution reactions without	breaki	ng metal-lig	and bond.				
Steroch	lemist	ry of substitution re	eaction in octahedral complex	kes. Si	ubstitution re	actions in				
square	plana	ar complexes-Trans	effect-uses factors affecting	ng the	e rate of su	ubstitution				
reaction	ns- iso	omerisation in plan	ar complexes; electron trans	fer rea	ctions in co	ordination				
compou	unds-	inner sphere mech	nanisms-outer sphere mecha	nisms-	-complement	ary- non-				
comple	menta	ry electron transfer	reaction mechanism.							
	-	Students analyze th	ne recent techniques in ligand-	substit	ution	K4				
Outcor	ne 3	Reactions in comp	lexes							

	UNIT - IV	
Objective 4	➢ To learn the structure of metal-carbon bonding.	
Metal Carbo	on Bonding	
Review of fo	ormalisms such as oxidation state, 18-electron rule, classes of ligands, Valend	ce
electron cour	nt (16/18 electron rules); Metal carbon bond types. Structure and bonding	in
mono and po	lynuclear metal carbonyls; substituted metal carbonyls and related compound	s;
reactivity of	metal carbonyls; vibrational spectra of metal carbonyls; dinitrogen	
and dioxyger	as ligands in organo metallic compounds Nitrosyls: terminal bridging and be	nt.
Outcome 4	Learns acquire knowledge on metal-carbon bonding. K6	
	UNIT – V	
Objective 5	To educate the recent techniques in nuclear chemistry, uses of radio isotopes.	
Nuclear Che	mistry	
Radioactive	decay-Nuclear structure: mass-energy relationship, nuclear binding energy	gy,
nuclear stabi	lity rules. Q value-threshold energy-cross reaction. Various types of nucle	ear
reactions- pl	notonuclear, spallation, Transmutation and thermonuclear reaction. Nucle	ear
fission and F	usion: Probability, mass and charge distribution, Nuclear reactors and their us	ses
for power pro	oduction. Nuclear fusion-conditions necessary-energy released in fusion-stel	ler
energy. Usag	ge of radio isotopes in neutron activation analysis and isotopic diluti	ion
analysis; radi	oactive waste management and disposal.	
Outcome 5	Learners critically evaluate the recent trends in nuclear chemistry. K5	
Suggested H	Readings:	
Lee, J.D. (2	2008). Concise Inorganic Chemistry (5 th ed.). Oxford.	
JohnC.Kotz	z, PaulM.Treichel, JohnTownsend. (2012). Chemistry& ChemicalReactivity (8 th ed.	.)
Cengage L	earning, USA.	/
Sodhi, G.S	. (2006). Inorganic Chemistry (I st ed.) VB(P) Ltd.	
Huheey, J.	E., Keiter, E.A., KeiterR.L., Methi, O.K. (2009). Inorganic Chemistry-	
Principles	of structure and reactivity (4 ^{un} ed.). 5 ^{un} Impression, Pearson-Education.	
Emeleus, F	H.J., Sharpe, A.G. (1999). Modern Aspects of Inorganic Chemistry. UBS.	
Weller M	Overton T. Bourke I. Armstrong F. (2018) Inorganic Chamistry (7 th ed)	
Oxford Ut	niversity Press	
Elias, A. G	Supta, B.D. (2013). Basic Organometallic Chemistry(2 nd ed.). Universities Pres	s.
Arnikar, H	.J. (2011). Essentials of Nuclear Chemistry(4 th ed.) NAEP Ltd.	
Online Reso	urces:	
https://kanchi	univ.ac.in/coursematerials/Mrs.%20MP%20-20Coordination%20Chemistry.pd	lf
http://home.ii	itk.ac.in/~madhavr/CHM102/Lec3.pdf	
https://www.	youtube.com/watch?v=_6d801X4pSk	
https://wou.ed	du/chemistry/courses/online-chemistry-textbooks/ch103-allied-health-	
chemistry/ch	103-chapter-3-radioactivity/	
http://www.n	ou.ac.in/econtent/Msc%20chemistry%20paper%202/MSc%20Chemistry%20l	Pap
er-II%20Unit	-3.pdf	

https://prgc.ac.in/uploads/study_material/CHEMISTRY%20OF%20F-									
BLOCK%20ELEMENTS%20BY%20K.N.S.SWAMIpdf473.pdf									
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create				
Course designed by Dr.G. Gopu & Dr.N. Sengottuvelan									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	L(1)	M(2)	S(3)	M(2)
CO3	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO5	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)
W.AV	2.4	2.8	2.6	2.4	2.2	3	1.6	2.4	2.2	1.6

Course Outcome Vs Programme Outcomes

S - Strong (3), M - Medium (2), L - Low (1) Course

Outcome Vs Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	M(2)	S(3)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)
W.AV	3	2.8	3	2.4	2.6

S - Strong (3), M - Medium (2), L - Low (1)

Semester - II												
Core	(Course Code: Organic Chemistry - II T Credits: 5 Hourse										
		536202										
UNIT - I												
Objective	Objective 1 > Develop a deep understanding of carbanion chemistry, focusing on C-X bond											
formations, enolate and enamine reactions, and their role in complex synthesis.												
Carbanio	ns a	nd Addition Rea	ctions									
C-X bond	(X=	=C,O,N) formation	ns through the intermediacy of Ca	rbanior	s: Chemistry	of enolates						
and enami	ines	, Kinetic and Th	ermodynamic enolates, Lithium a	nd bor	on enolates in	aldol and						
Michael re	eact	ions, Alkylation	and acylation of enolates, Nucleop	hilic ad	lditions to car	bonyls and						
stereochen	nica	l aspects throug	gh various models (Cram/Cram	chelati	on/Felkin-Anł	n models);						
Organolith	ium	n, Organomagnesi	um, Organozinc, Organocopper rea	agents (1	restricted to 1,	4-addition)						
in synthes	sis,	Name reactions	under carbanion chemistry - Cla	isen, D	ieckmann, Kr	oevenegal,						
Stobbe, Da	arze	en, Acyloin conde	ensations, Shapiro reaction, Julia o	olefinati	on, Peterson o	olefination.						
Ylides: Ch	emi	stry of Phosphore	ous and Sulphur ylides.									
Outcomo	1	Gain expertise in	n carbanion chemistry and apply	it to pr	edict C-X box	nd K3						
Outcome	1	formations, enola	te and enamine reactions, and advan	nced syn	thetic methods	5.						
UNIT - II												
Objective	2	Explore mole	cular rearrangements, from electron	n-defici	ent to electron	-rich						
Objective	2	systems, and	study the generation, reactivity, and	rearran	gements of car	benes and						
Malaariar	. D a	nitrenes.										
Classifiest	' Ke	of Deemon come	nte Electron deficient and electro	un mich	altalatal maam	ion com onto						
Weenen M		Of Realitangeme	and electron deficient and electron	on nen	Skeletal leal							
offect C C	bo	and formation in	uslying aspections overmore unit	tion he	lalactorization	- Memory						
Wittig So		alat Hausar Gra	working Carbocations, oxymercurat	uonta na	notacionisation	I. Slevens-						
Chanman	Wol	lach rearrangem	ovensteni- Zimmermann rearrangen	tura of	ourbonos ag	angements,						
Chapman-	odd	ition and incorti	ent. Carbenes and Nuteries. Stud	ong of	carbones, ger	Wolff						
	auu	Structure of nite	on reactions, rearrangement reactions of n	itrono or	d related alag	tron						
deficient	itro	, Suluciule of IIII	Curtius Hoffmann Schmidt Dool		iu relateu elec	uon						
deficient n	ltro	Develor the shill	, Curtius, Hollmann, Schmidt, Beck			eactions.						
Outcome	2	Develop the abit	and predict molecular	into the	igements, men	iuling KS						
Outcome	2	carbene and nitr	al	into the	ir mechanisms	s and						
		synthetic potenti										
		Nester steres		a la fan	1.4	1 t -						
Objective	2	Master stereo	selectivity principles, analyze meth	ods for	determining at $\frac{1}{1}$							
	5	configuration	, and grasp the concept of topic	city and	a prostereoiso	merism in						
Ct I	•	various chiral	systems.									
Stereoche	mis	try and Reactivit		-4	1 4::4	1						
Stereoselectivity: Classification, terminology, principle of stereoselectivity, examples of												
diastereose		tivity using Cram	, Cram-Chelate, Felkin-Ahn, anti-F	eikin, H	OUK models, C	Jeplak and						
cation cool	rain	ation models, and	1 Zimmerman-Traxler transitionstat	es, enar	moselectivity.							

Desymmetrization and kinetic resolution, methods of determination of absolute configuration. Topicity and prostereoisomerism-topicity of ligands and faces, and their nomenclature – NMR and Steroisomers- Axial, planar and helical chirality – examples – stereochemistry and absolute configuration of allenes, biphenyls and binaphthyls, ansa and cyclophanic compounds, spiranes, exo-cyclic alkylidene cycloalkanes.

•										
	Master stereoselectivity principles, apply methods to determine absolute	K3								
Outcome 3	configuration, and understand the stereochemical complexities of diverse									
	chiral systems.									
	UNIT - IV									
	Investigate radical generation, their reactivity, and their application in synthetic									
Objective 4	transformations, while understanding the intricacies of photochemical rea	transformations, while understanding the intricacies of photochemical reactions								
	and their synthetic value.									
Radicals and	Photochemical Reactions									
Radicals: Ger	neration of radical intermediates and its (a) addition to alkenes, alkynes (inter &	intra								
molecular) fo	r C-C bond formation and Baldwin's rules (b) olefin metathesis (c) fragmentatio	n and								
rearrangemen	ts. Organic Photochemistry: Thermal versus photochemical reactions-Photoche	mical								
reactions of K	Ketones-Norrish I & II type reactions - Photoreduction - Photosensitization - Read	ctions								
of α,β -unsatu	rated ketones - Isomerization and cycloadditions -cis-trans isomerisation of s	imple								
olefins-Paterr	no-Buchi reaction-Di-pi-methane rearrangement-Photooxidation-Oxidative coup	pling-								
Sandmeyer re	eaction, Gomberg-Bachmann reaction, Pschorr reaction, Ullmann reaction and	1								
Hunsdiecker	reaction, McMurry coupling, Barton deoxygenation and decarboxylation.									
0	Explore radical and photochemical reactivity, mastering their synthetic	K4								
Outcome 4	applications and predicting the outcomes of photochemical transformations.									
	UNIT - V	<u> </u>								
Objective 5	> Examine pericyclic reactions and apply Woodward Hoffmann rules,									
Objective 5	elucidating stereochemical outcomes and their applications in designing con	mplex								
	reactions.									
Concerted R	eactions	1								
Pericyclic Re	actions: Classification, electrocyclic, sigmatropic, cycloaddition, chelotropic at	nd ene								
reactions, W	oodward Hoffmann rules, Frontier Orbital and Orbital symmetry corr	elation								
approaches, e	xamples highlighting pericyclic reactions in organic synthesis such as Claisen,	Cope,								
Diels-Alder a	ind Ene reactions (with stereochemical aspects), introductory dipolar cycload	dition.								
Unimolecular	pyrolytic elimination reactions: Cheletropic elimination, Decomposition of cyc	lic azo								
compounds, b	eta-eliminations involving cyclic transition states such as sulphoxides, selenoxid	les, N-								
oxides, acetate	es and xanthates eliminations.									
Outcome 5	Acquire the skills to classify pericyclic reactions, predict their stereochemical	K4								
	outcomes, and strategically plan complex synthesis pathways involving									
	concerted rearrangements.									
Suggested R	eadings:	ווות								
INATAIN,	K.F. (2011). Fundamenials of Keacilon Mechanisms in Organic Chemistry.	гПI								

Mukherji, S.P. Singh, S.P. (2004). Reaction Mechanism in Organic Chemistry (3rded.). Macmillan India Ltd, New Delhi. Kalsi, P. S. (2014). Organic reaction and their Mechanism (2nd ed.). New Age International Private Limited, New Delhi. Carruthers, W., Coldham, I. (2005). Modern methods of Organic Synthesis. First South Asian Edition, Cambridge University Press. March, J., Smith, M. B. (2007). March's Advanced Organic Chemistry: Reactions, *Mechanisms, and Structure* (6th ed.). Wiley. Fleming. (1976). Frontier Orbitals and Organic Chemical Reactions. Wiley, London. Singh, J. (2005). Photochemistry and Pericyclic Reactions. New Age International. Klán, P., Wirz, J. (2009). Photochemistry of Organic Compounds: From Concepts to Practice. Wiley, Chichester. Sankararaman, S. (2005). Pericyclic Reactions- A Text Book, Wiley VCH. Carey, F. A. Sundberg, R. A. (2007). Advanced Organic Chemistry, Part B: Reactions and *Synthesis* (5th ed.). Springer, New York. StevanA.Fleming, W.W. Norton & Compound. (2010) Organic Chemistry (4th ed.). London. Harris, J.M. Wamser, C.C. (1976). Fundamentals of Organic reaction Mechanisms. John Wiley& Sons, New York. Lowry T.H., Richardson, K. S., Harper and Row. (1976). Mechanism and theory in Organic Chemistry. New York. Clayden, J. Geeves, N., Warren, S. (2012). Organic Chemistry (2nded.). Oxford Uni. Press. Brückner, R. (2010). Organic Mechanisms - Reactions, Stereochemistry and Synthesis (Ist ed.). Springer. Paula Y. Bruice. (2010). Organic Chemistry (6th ed.) Prentice Hall. Mark G. Moloney. (2008). Structure and Reactivity in Organic Chemistry (Ist ed.). Wiley-Blackwell. Turro, N. J., Ramamurthy, V., Scaiano, J. C. (2010). Modern Molecular Photochemistry of Organic Molecules. University Science Books, Sausalito. **Online Resources** https://nptel.ac.in/ https://ocw.mit.edu/ https://www.masterorganicchemistry.com/ https://chem.libretexts.org/Bookshelves/Organic Chemistry https://chemistrynotes.com/pages/organic-chemistry-notes https://www.khanacademy.org/science/organic-chemistry https://www.chemguide.co.uk/ https://commonorganicchemistry.com/ https://www.organic-chemistry.org/ https://hbu.libguides.com/chemistry K1-Remember **K2-Understand** K3-Apply K4-Analvze K5-Evaluate K6-Create Course designed by Dr M. Sundrarajan & Dr.S. Viswanathan

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	L(1)	M(2)	S(3)	M(2)
CO3	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO5	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)
W.AV	2.4	2.8	2.6	2.4	2.2	3	1.6	2.4	2.2	1.6

Course Outcome Vs Programme Outcomes

LAGAPPA UNIVERSITY

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	<mark>S</mark> (3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	M(2)	S(3)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)
W.AV	3	2.8	3	2.4	2.6

S-Strong (3), M-Medium (2), L-Low (1)
SEMESTER - II								
Core	Course code: 536203	Physical Chemistry-II	Р	Credits: 5	Hours: 5			
		UNIT - I						
Objective 1	To make the	n understand the knowledge about t	he quan	tum chemistry a	pplications.			
Quantum C orbitals, shap bound states numbers, zer	Quantum Chemistry : Application of wave mechanics: Rigid rotor, harmonic oscillators, shapes of orbitals, shape quantization. Solution of the Schrodinger equation for exactly solvable problems for bound states such as particle-in-a-box, particle-in-a-ring, distortions, John-teller effect, quantum numbers, zero-point energy, tunneling, and perturbation theory							
Outcome 1	Students unde	rstand the application of the quantu	m chem	istry and solve				
	the derivation	5.			K5			
		UNIT - II						
Objective 2	To teach the	group theory based on Spectroscopy	applica /	ation.				
vibrational I Selection rul of SALC pro in ligand field Outcome 2	R and RAMAN spectrum for $n-\pi^*$ and $\pi-\tau$ because to ethylene ds, molecular orbita The students selection rules	bectra, Mutual exclusion rule for the transitions in formaldehyde molecules and butadiene molecules. Application should be able to understand the space and the applications of group theorem.	molecul ecule. S on of gr	es with center of ALC procedure, oup theory to ato	of symmetry, Applications omic orbitals K3			
		UNIT - III						
Objective 3	To provide stu principles and	idents with a comprehensive unders concepts of chemical kinetics.	tanding	of the fundamen	ıtal			
Chemical K	Sinetics: Solution	and gas phase kinetics: Chain rea	ctions a	and its rate law	s, Hydrogen-			
bromine reaction, Polymerization kinetics: stepwise and chain polymerizations. Homogeneous catalysis: Features of acid-base catalysis. Enzymes: Michaelis-Menten mechanism of enzyme catalysis, Salt effects, catalytic efficiency of enzymes, Enzyme reaction, mechanisms of enzyme inhibition. Fast reaction kinetics: Relaxation methods (T- and P-jump methods), Stopped flow methods, Shockwave technique Elash photolysis								
Outcome 3	The students solution and g	understanding the kinetics reaction as phase.	and the	eir rates in the	K2			

		UNIT - IV	
Obje	ctive 4	To provide students brief knowledge about classical thermodynamics.	
Classi	cal Therm	odynamics: Thermodynamics concept: Concept of entropy, reversible an	d irreversible
proces	ses, Free e	nergies. Fundamental equations for open systems, Partial molar quantities	and chemical
potent	ial, Gibbs-	Dunem equation, Real gases and Fugacity. Thermodynamics of ideal a	nd non-ideal
solutio	ons: Liquic	1-liquid solutions, liquid-solid solutions, multi component systems and	mean ionic
Theor	y.	ints. Debye-flucker miniming law and its extensions. Applications of De	bye-nuckei
Outc	ome 4	The student learns the thermodynamics concepts and the fundamental equations and theories	K2
Ohio	ativo 5	UNIT - V	watand the
Obje	cuve 5	catalysis and their applications.	
Surfa	ice Chemi	stry and Heterogeneous Catalysis: Surface and interfaces: Surface ter	nsion, solid-
liquio	l interfaces	s; contact angle and wetting; Solid-gas interface; Physisorption and cher	misorptions,
Freur	dlich, Gi	bbs, Langmuir, and BET adsorption isotherms; Surface area det	erminations.
Heter	ogeneous	catalysis: Kinetics of surface reactions involving adsorbed species,	Langmuir-
Hinsl	nelwood m	echanism, Langmuir-Rideal mechanism. Basic aspects of semiconductor c	atalysis and
appli	cations. Mo	odel catalysts: Ammonia synthesis; Hydrogenation of carbon monoxide; H	Iydrocarbon
conve	ersion.		
Outc	ome 5	Students have received knowledge about the surface chemistry and	K3
		catalysts and create the applications in the related fields.	
Sug	gested Rea	dings:	
1.	Atkins, P.	, Paula, J. (2014). Physical Chemistry (10th ed.). Oxford University Press,	
	Oxford.		
2.	Mc Quarr	ie, D. A. (1983). Quantum Chemistry. University Science Books.	
3.	Kunju A.	Salahuddin, and Krishnan G., Group Theory and Its Applications in Cher	nistry
	(2015), P	HILearning Private Limited, Delhi.	
4.	K.V.Ram	an, Group Theory and Its Applications to Chemistry, (1990) McGraw-Hi	ll Education,
	NewYork	, United States.	
5.	Cotton, F.	A. (1996). Chemical Applications of Group Theory. Wiley.	
6.	Laidler, K	L. J., Harper & Row. (1998). Chemical Kinetics (3rd ed.), New York, 1998.	
7.	Denis Jar	nes Evans, Debra Joy Searles, Stephen Rodney Williams, (2016) Fund	damentals of
	Classical	Statistical Thermodynamics: Dissipation, Relaxation, and Fluctuation	n Theorems,
	Wiley, Ne	ew York, United States.	
8.	Arthur W WileyNev	. Adamson, Alice P. Gast (1997). <i>Physical chemistry of surfaces</i> , 6 v York, United States.	th <i>Edition</i> ,

Online Resources							
https://www.britannica.com/science/quantum-mechanics-physics							
https://www.jove.com/v/10442/application-of-group-theory-to-ir-spectroscopy							
https://byjus.c	https://byjus.com/jee/chemical-kinetics/						
https://www.s	sciencedirect.com/to	pics/physics-and-a	astronomy/classi	<u>cal-thermodynami</u>	<u>cs</u>		
https://byjus.c	com/chemistry/adsor	ption-theory-hete	rogeneous-cataly	vst/			
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create							
Course designed by : Dr. T. Stalin							

Course Outcome Vs Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)
CO3	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	L(1)	M(2)	M(2)	L(1)
CO4	M(2)	M(2)	S(3)	S(3)	M(2)	S(3)	L(1)	S(3)	M(2)	M(2)
CO5	M(2)	S(3)	L(1)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
W.AV	2.2	2.8	2.4	2.2	2.2	3	1.4	2.6	2.2	1.6

S-Strong (3), M-Medium (2), L- Low (1)

Course Outcome Vs ProgramSpecific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	L(1)	M(2)	S(3)	M(2)
CO2	S(3)	M(2)	S(3)	M(2)	S(3)
CO3	M(2)	M(2)	S(3)	M(2)	L(1)
CO4	M(2)	S(3)	S(3)	S(3)	L(1)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
XX 7 A X 7	2.4	2.2	2.0	26	2
w.Av	2.4	2.2	2.8	2.0	Z

S-Strong (3), M-Medium (2), L- Low (1)

	Semester - II									
Core	С	ourse Code:	Organic Ch	emistry - Practical	P	Credits: 5	Hours: 8			
		536204								
		To acquire	practical skills or	(i) organic double sta	age p	reparation; (i	i) separation			
Objecti	vo	and identification of components in a mixture; (iii) TLC and column								
Object	IVC	chromatographic separation; (iv) extraction of organic compounds from natural								
		products; (v) UV-vis, FT-IR,	elemental analysis of	f the o	extract.				
		1. Qualitative	analysis:							
		Separation and	Identification of	components in a two	com	ponent mixtu	re and			
		preparation of	their derivatives.	Determinations of bo	iling	point/melting	g point for			
		components ar	d melting point f	or their derivatives.						
		2. Double stag	e Organic prepa	ration:						
		Benzanilide fro	om benzophenone							
		Eosin from ph	halic anhydride.							
		Methyl orange	from Aniline.							
		Benzoic acid f	rom Aniline.							
		3. Thin layer	and Column Chi	romatographic separ	atio	n of mixture	s of organic			
		compounds:								
		Purification of	anthracene.							
		Separation of a	minoac <mark>id</mark> s.							
		Separation of b	enzoic acid from	benzaldehyde.						
		4. Extraction	of natur <mark>a</mark> l produ	cts such as Piperine,	Case	in, Caffeine.				
		5. Identificat	on of functiona	l groups of organic	con	ipounds pre	pared and			
		extracted.								
		UV-VIS spectr	a of α, β-unsatura	ited carbonyl						
		systems.FT IR	spectra of few or	ganic compounds.						
		Determinatio	n of C, H, N, S	5, O in an organic	com	pound using	elemental			
		analyser.								
Outcom	e	Outcomes: T	ne student would	be able to acquire p	racti	cal skills in	K6			
		the double-sta	ge preparation o	f organic compound	s, se	paration of				
		component in	organic mixture,	identification of orga	anic	compounds,				
		chromatograph	ic separations, e	xtraction of compour	nds fi	rom natural				
		products and a	nalysis using instr	rumental methods.						
Sugges	sted I	Readings:								
Furnis	s, B.	S., Hannaford,	A.J., Smith, P.W.	G., Tatchell A.R. (19	989).	Vogel's Pra	cticalOrganic			
Chemi Dei V	istry (5^{m} ed.). ELBS.	houstom Manual	of Our ania Chamiat	(2^{1})	rd ad) Now	1 ~~~			
Kaj K. Bansal. (1996). Laboratory Manual of Organic Chemistry (3 ed.). New Age							Age			
VogelA. L(2011). Elementary practical organic chemistry. Quantitative organic analysis Part-							ulvsis Part-			
III, 2e	<i>III, 2e(pb)</i> . Pearson Education Asia.									
Vogel	Ā.I. (2011). Element	ary practical org	anic chemistry: Quali	itativ	e organic and	alysis Part-			
II. Pea	rson	Education Asia								

Online Resources							
https://vlab.amrita.edu/							
https://praxilabs	.com/						
https://www.mh	education.ca/higher-ec	ducation/lear	ning-solutions/	virtual-labs			
https://uwaterlo	o.ca/racicot-organic-c	hemistry-lab/	online-resourc	es			
https://nptel.ac.i	n/						
https://ocw.mit.e	edu/						
https://www.mas	sterorganicchemistry.	com/					
https://chem.libr	etexts.org/Bookshelve	s/Organic_C	hemistry				
https://chemistry	ynotes.com/pages/orga	anic-chemistr	y-notes				
https://www.kha	nacademy.org/science	e/organic-che	mistry				
https://www.che	mguide.co.uk/						
https://commono	organicchemistry.com	/					
https://www.organic-chemistry.org/							
https://hbu.libguides.com/chemistry							
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create		
	Cours	e designed by	Dr. M. Sundr	arajan & Dr.S.	Viswanathan		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	L(1)	M(2)	S(3)	M(2)
CO3	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO5	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)
W.AV	2.4	2.8	2.6	2.4	2.2	3	1.6	2.4	2.2	1.6

Course Outcome Vs Programme Outcomes

S-Strong (3), M-Medium (2), L-Low (1) Course

Course Outcome Vs Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO			
					5			
CO1	S(3)	S(3)	S(3)	S(3)	S(3)			
CO2	S(3)	S(3)	S(3)	M(2)	S(3)			
CO3	S(3)	S(3)	S(3)	M(2)	S(3)			
CO4	S(3)	M(2)	S(3)	M(2)	M(2)			
CO5	S(3)	S(3)	S(3)	S(3)	M(2)			
W.AV	3	2.8	3	2.4	2.6			

S-Strong (3), M-Medium (2), L-Low (1)

			Semester - III				
Core	Cours	se Code:	Advanced Inorganic Chemistry	Т	Credits	:5	Hours: 5
	53	6301					
			UNIT - I				
		To fam	iliarize basic information about organome	tallic	complexes	, rir	ıg
Objec	ctive 1	openin	g, ring closing metathesis in organic syn	nthesi	s and Met	al a	rene
		comple	exes.				
Synthes	sis of Or	ganometall	ic Complexes				
Synthes	is and re	activity of r	netal alkyls, alkene, alkynes and complexe	es; pi-	-complexes	s wit	h
olefins,	acetylene	s. Metal (V	W, Cr, Rh, Ru, Mo) carbene complexes	, Fisc	cher, Schro	ock a	and
Grubbs	typecarb	oine comple	xes, comparison of their stabi	lity aı	nd reactivit	y, si	mple
and cro	ss metath	esis reactio	ns, ring opening, ring closing metathesis ir	orgai	nic synthes	is-	
cyclope	ntadieny	l complexes	-bonding with transition metals-metalloce	nes-fe	errocene; N	letal	arene
complex	xes-synth	esis					
and read	ctivity.	1					
Oute	ome 1	Learners	understand the fundamental concepts or	n synt	thesis of		K2
0400	onic I	organome	tallic complexes.				
			UNIT - II				
Ohieo	rtive 7	To pro	vide technical knowledge in Reactions of	of Org	ganometall	ic C	omplexes,
Catalysis and polymerization.							
Reactions of Organometallic Complexes							
Reaction	n mecha	nism-Lig a	nd substitution, oxidative addition, redu	ctive	eliminatio	n, n	nigratory
insertion	n and h	ydride elim	ination, trans metallation, Nucleophilic	and	Electrophil	ic a	ttack on
coordin	ated li	gands inc	organometallics. Fluxional molecules	. C	atalysis-Hy	/drog	genation,
Hydrofo	ormylatio	n, pauson	Khand reaction, Monsanto process, Wack	er pro	ocess, alke	ne	
polymer	rization -	Ziegler-Nat	ta Polymerisation.				
Outco	ome 2	Students d	iscuss the Reactions of Organometallic Co	omple	xes		K4
			UNIT - III				
Objec	ctive 3	To edu Compl	acate on recent developments in Spectral exes.	and 1	Magnetic I	Prop	erties of
Spectra	and M	agnetic Pro	perties of Complexes				
Electron	nic spect	ra of coord	ination compounds - Determining the En	ergy	terms, Spi	n-or	bit (L-S)
coupling	g scheme	e, Hund's r	ule, Derivation of the term symbol for a	d^2c	onfiguratio	n, E	lectronic
Spectra	of trai	f a a trans	itiona Narkal appresente orbital selection	rule,	spin se		on rule.
Charact	eristics (of a-a trans	sitions. Nephei auxetic effect, energy le	o over a	hagrams o	IU	rger and
Tanabe-	- Sugano) Diagrams	of octahedral complexes with d^2 &	d ^o c	onfiguratio	on. 1	Magnetic
susceptibility-Gouy balance, SQUID magnetometry, Magnetic properties of coordination							
compou	ınds -dia,	-para-ferro	and anti-ferro magnetism-spin cross over p	henor	mena.		
Oute	ome 3	Students a	nalyze the recent trends in Orgel and Tana	be- Si	ugano		K3
		Coordinat	or octanedral complexes and Magnetic pro	pertie	25 01		

	UNIT - IV					
Objective 4	> To learn the structure of Bio inorganic Chemistry and Photosynthesis.					
Bioinorganic C	hemistry					
Essential and tr	ace metal ions in biology and their distribution-nucleotides and their I	potential				
metal- binding s	sites; Metal storage and transport-molecular mechanism of ion transport	t across				
membranes- ion	nophores. Na ⁺ /K ⁺ pump. Electron transport, Monooxygenase, diox	ygenase,				
phosphorylase, r	eductase, Processes in Photosynthesis-Photosystems I and II. Metals in m	edicine-				
therapeutic appli	ications of cis-platin, radio-isotopes (e.g., Tc & I2) and MRI agents. To:	xicity of				
metals-Al, Cd, I	Hg and Cr toxic effects with specific examples, detoxification by chelation					
Outcomo 4	Learns acquire knowledge on Essential and trace metal ions in	K4				
Outcome 4	biology and their distribution and Processes in Photosynthesis.					
	UNIT - V					
Objective 5	To educate the recent techniques in Metalloenzymes and Metalloprote	ins.				
Metalloenzymes	s and Metalloproteins					
Transport and S	torage of Dioxygen- Heme proteins & oxygen uptake, structure and fun	ctions of				
haemoglobin, m	yoglobin, hemocyanins and hemerythrin. Metallo enzymes- The principle	involved				
and role of var	ious metals in (i) Zinc containing enzymes-carboxy peptidase- A and	carbonic				
anhydrase, (ii) H	Fe-enzyme-Cytochrome P-450, (iii) Cu-enzyme: Super Oxide dis mutase,	(iv) Co-				
enzyme- Vit.B1	2. Electrontransfer in Biology- Structure and functions of metallo pr	oteins in				
electron transfer	proteins, cytochromes & Fe-S proteins, Non-heme iron proteins;					
Rubredoxins, Bi	ological Nitrogen fixation. Structure and properties of Chlorophyll.					
Outcome 5	Learners critically evaluate the recent trends in Metalloenzymes and	K5				
	Metalloproteins.					
Suggested Read						
Gopalan, R. (2	2009). Concise Coordination Chemistry. IE2nd reprint, VPH(P)					
Lu.	nd					
WilliamJolly,	L., McGraw-Hill. (2007). Modern Inorganic Chemistry (2 ed.).					
WahidU.Mali	k, Tuli, G.D., Madan, R.D., Chand, S.&Co. (2013). Selected Topics in Inor	ganic				
Chemistry.						
Huheey, J.E.,	Keiter, E.A., Keiter, R.L., Methi, O.K. (2009). Inorganic Chemistry- Princ	iples of				
structure and	<i>reactivity</i> (4 th ed.). 5 th Impression, Pearson-Education.					
Cotton, F.A., Wilkinson, G., F. AMurillo, F.A., Bochmann, M. (2007). Advanced Inorganic						
Chemistry (6 th ed.). JohnWiley.						
Sathyaprakasł	n, J.D., Tuli, S.K., Basu, K., Madan, R.D., S. Chand&Co. (2006). Advanced	!				
Inorga	unic Chemistry (I st ed.). (Vol I&II).					
Das, A.K., Da Chemi	s, M., ArunabhaSen. (2018). <i>Biophysical, Bio organic and Bio inorganic stry Books</i> and Allied (P) Ltd.					

Online Resources:								
https://www.youtube.com/watch?v=XLY_V7gEeb8								
https://www.uou.ac.in/lecturenotes/science/MSCCH-17/CHE-								
501%20Lectur	e%202%20Metal%2	20Cluster.pd	f					
https://www.ss	casc.in/wp-content/u	ploads/down	loads/Chemist	try/Inorganic-Ch	emistry.pdf			
https://www.su	rendranathcollege.ac	.in/new/uplo	ad/SOURAV_	MISRABIO-				
INORGANIC%20CHEMISTRY2021-06-25bioinorganic.pdf								
K1-Knoledge	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create			
Course designed by Dr.G. Gopu & Dr. N. Sengottuvelan								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	L(1)	M(2)	S(3)	M(2)
CO3	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO5	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)
W.AV	2.4	2.8	2.6	2.4	2.2	3	1.6	2.4	2.2	1.6

Course Outcome Vs Programme Outcomes

S - Strong (3), M - Medium (2), L - Low (1)

Course Outcome Vs Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	M(2)	S(3)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)
W.AV	3	2.8	3	2.4	2.6

S - Strong (3), M - Medium (2), L - Low (1)

	Semester - III									
Core	Co	ourse Code:	Advanced Organic Chemistry	T	Credits: 5	Hours: 5				
		536302								
UNIT - I										
	➢ Learn to effectively employ metal and non-metal oxidizing agents to									
	transform alcohols, alkenes, and ketones into diverse functional groups.									
Understand the mechanisms and applications of oxidations, including										
epoxidation, dihydroxylation, and bond cleavage reactions, and their rol-										
		complex	synthesis.							
Oxidizi	ng Re	agents in Orga	nic Synthesis							
Metal b	ased a	and non-metal b	ased oxidations of alcohols to carbonyls	(Cr	, Mn, Al, hy	pervalent				
iodine a	and TE	MPO based rea	gents), phenols (Fremy's salt, silver carbo	onate	e), alkenes to	epoxides				
(peroxid	des/per	acids based), S	Sharpless asymmetric epoxidation, alkene	s to	diols (Mn, O	s based),				
Sharple	ss asyı	mmetric dihydro	oxylation, Prevost reaction and Woodwar	d m	odification, a	kenes to				
carbony	'ls with	n bond cleavage	(Os and Ru, ozonolysis), alkenes to alcoh	ols/c	arbonyls with	out bond				
cleavag	e (hyd	roboration-oxid	ation, Wacker oxidation, Se, Cr based ally	ylic o	oxidation) and	l ketones				
to ester/	lacton	es (Baeyer-Villi	ger).							
		Master the app	ication of diverse oxidizing agents to con	vert	alcohols,	K4				
Outcon	ne 1	alkenes, and ke	tones into functional groups, while compr	ehen	ding their					
		mechanisms and	l roles in intric <mark>ate</mark> synthesis.							
			UNIT - II							
		Master the a	rt of using reducing agents like catalytic h	ydro	genation, bore	ohydrides,				
		and hyd <mark>ride</mark>	transfer reagents to strategically accomp	olish	diverse reduc	ctions and				
Objecti	ve 2	stereo/enant	oselective transformations.							
		 Comprehend 	l the mechanisms and selectivity invol	ved	in various	reduction				
		reactions, bo	th catalytic and non-catalytic, for efficient	synt	hetic strategie	es.				
Reduci	ng Rea	agents in Organ	nic Synthesis							
Catalyti	c hyd	rogenation-Hete	progeneous: Pd/Pt/Rh/Ni, Homogeneous,	Wi	lkinson, Li/I	Na/Ca in				
liquid a	ammor	nia-Birch, Pinac	col formation, McMurry, Acyloin form	ation	n, dehalogena	tion and				
deoxyge	enatior	ns, Hydride trar	sfer reagents from Group III and Group	IV	in reductions	– LiBH4,				
NaBH ₄ ,	triace	etoxyborohydrid	e, L-selectride, K-selectride, Luche redu	iction	n; LiAlH ₄ , D	IBAL-H;				
Trialky	lsilanes	s, Meerwein-Po	ndorff-Verley reduction-Stereo/enantiosel	ectiv	e reductions	-Chiral				
Boranes	s, Core	y-Bakshi-Shiba	a.							
		Develop expe	rtise in using reducing agents to strategi	cally	accomplish	a K4				
Outco	me 2	variety of red	uctions and stereo/enantioselective transf	form	ations, and					
		understand the	mechanisms behind these processes.							

	UNIT - III						
Objective 3	 Familiarize yourself with cutting-edge synthetic methodologies like metal- mediated coupling reactions, phase transfer catalysts, and solid-state synthesis to construct complex molecules. Explore modern reactions such as Baylis-Hillman, Heck, Stille, and Suzuki, understanding their applications in creating intricate organic structures. 						
Modern Orga	nic Synthesis						
Baylis-Hillman reaction, Henry reaction, Nef reaction, Ritter reaction, Sakurai reaction and Tishchenko reaction. Tebbe olefination. Metal mediated C-C and C-X coupling reactions: Heck, Stille, Suzuki, Negishi and Sonogashira, Nozaki-Hiyama, Buchwald-Hartwig Ullmann coupling reactions, Directed ortho metalation. Phase transfer catalysts, Crown ethers, Solid state synthesis - Merrifield resin. Robinson annulations.							
Outcome 3	Familiarize yourself with contemporary synthetic methodologies like K3 metal-mediated coupling reactions and solid-state synthesis, and gain insight into their application for complex molecule construction.						
	UNIT - IV						
Objective 4	 Develop proficiency in devising strategies for the synthesis of various ring sizes, including three, four, five, and six-membered rings, through cyclization and inter-conversion approaches. Understand advanced concepts like Pauson-Khand reaction, Bergman cyclization, and ring-closing metathesis, gaining expertise in constructing complex ring systems. 						
Construction	of Ring Systems						
(i) Different a Pauson-Khand radical-olefin Construction o	pproaches towards the synthesis of three, four, five, and six-membered rings; (ii) reaction, Bergman cyclization; Nazarov cyclization, cation-olefin cyclization and cyclization, inter-conversion of ring systems (contraction and expansion); (iii) f macrocyclic rings and ring closing metathesis.						
Outcome 4	Learn strategies for synthesizing different ring sizes and understandK4advanced concepts such as Pauson-Khand reaction, Bergman cyclization, and ring-closing metathesis, for constructing intricate ring systems.K4						
	UNIT - V						
Objective 5	 Grasp the principles of retrosynthetic analysis, using one and two-group disconnections to plan systematic synthetic routes for target molecules. Learn to protect and deprotect functional groups selectively, understanding chemoselectivity and regioselectivity, and apply these strategies in complex synthesis. 						
Retrosynthesi	s and Functional Group Protection						
Basic principle one group and functional gro carboxy amino and deprotection	es and terminology of retro-synthesis, one group and two group C-X disconnections, two group C-C disconnections, important strategies of retro-synthesis and important up inter-conversions. Protection and deprotection of hydroxy, carboxyl, carbonyl, groups, alkene, 1,3 butadiene, alkyne,; chemoselective and regioselective protection on. Systematic synthetic routes for jasmone, ascorbic acid and retinol. Asymmetric						

Synthesis-Basics, Classical reactions and stereochemistry involved in the synthesis.

Outcome 5	Acquire the ability to perform retrosynthetic analysis and design systematic H	K4
	routes for target molecules, while mastering the selective protection and	
	deprotection of functional groups in complex synthesis.	
Suggested R	Readings:	
Morrison,	R.T. and Boyd's, R. N. (2008). Organic Chemistry (6 th ed.) Springer.	
MichealB.	.Smith, Jerry March. (2007). March's Advanced Organic Chemistry Reactions,	
Mechanisn	ms and Structure(6 th ed.) JohnWiley& Sons Inc., New Jersey.	
Mukherji,	S. P., Singh, S. P. (2004). Reaction Mechanism in Organic Chemistry (3 rd	
ed.). Macm	nillan India Ltd, New Delhi.	
I.L. Finar,	, I. L. (2004). Organic Chemistry Vol. I &II(5 th ed.). Pearson Education, Singapore.	
Kalsi, P. S	S. (2000). Organic Reactions and Mechanisms, (2 nd ed.). New Age International	
Publishers.	5.	
Pine, S. H.	I., Hendrickson, J. B., Cram, D. J., Hammond, G. S. (1980). Organic Chemistry (4	4 th
ed.). McGr	raw-Hill Company.	
Mukherji,	S. M., Singh, S. P.(1984). Reaction Mechanism in Organic Chemistry (3 rd ed.).	1984,
Mac Millar	an.	
R.O.C. No	orman, R. O. C. (1978). <i>Principles of Organic Synthesis</i> (2 nd ed.). Chapman and	
Hall.	S ALAGAPPA UNIVERSITY	
Mackie, R.	R. K., Smith. (1990). Organic Synthesis (2 nd ed.). Longman Group UK Ltd.	
Ahluwalia,	a, V. K., Parashar, R. K. (2002). Organic Reaction Mechanisms. Narosa Publis	shing
House.		
Carrothers,	s, W. (1982). Some modern methods of organic synthesis. OUP. House,	H.
O. Modern	nsynthetic reactions. Allied publishers.	
F. A. Care	ey, F. A., R. A. Sundberg, R. A. (2007). Advanced Organic Chemistry, Pa	irt A:
Structure d	ana Mechanisms(5 ed.). Springer, New York.	
Unine Resol	burdes	
nttps://nptei.		
https://ocw.n	mit.edu/	
https://www.	y.masterorganicchemistry.com/	
https://chem.	n.libretexts.org/Bookshelves/Organic_Chemistry	
https://chem	nistrynotes.com/pages/organic-chemistry-notes	
https://www.	y.khanacademy.org/science/organic-chemistry	
https://www.	v.chemguide.co.uk/	
https://comm	monorganicchemistry.com/	
https://www.	v.organic-chemistry.org/	
https://hbu.li	libguides.com/chemistry	
K1-Remembe	per K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Cred	ate
	Course designed by Dr. M. Sundrarajan & Dr.S. Viswanath	an

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
<u>CO1</u>	M(2)	$\mathbf{S}(2)$	$\mathbf{S}(2)$	M(2)	M(2)	$\mathbf{S}(2)$	L (1)	$\mathbf{S}(2)$	M(2)	I (1)
COI	M(2)	5(3)	5(3)	M(2)	M(2)	5(3)	L(1)	5(3)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	L(1)	M(2)	S(3)	M(2)
CO3	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO5	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)
W.AV	2.4	2.8	2.6	2.4	2.2	3	1.6	2.4	2.2	1.6

Course Outcome Vs Programme Outcomes

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	M(2)	S(3)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)
W.AV	3	2.8	3	2.4	2.6

S-Strong (3), M-Medium (2), L-Low (1)

Semester - III										
Core	Course code:	Advanced Physical Chemistry	Т	Credits: 5	Hou	rs:5				
	536303									
		UNIT –I								
Objective	1 To achieve an	understanding of the electronic structure a	and sp	pectra of many	-electron					
	atom, term sy	mbols, and selection rules.								
Advanced	l Quantum Chem	istry								
Structure	of many-electron	atoms: Helium and Hydrogen atoms,	hydro	ogen molecule	ion, hydr	rogen				
molecule,	Pauli principle, e	lectron affinities, Self-consistent field, at	omic	orbitals, Slater	Type Orb	itals,				
Slater exp	onents and the per	iodic properties of elements; LCAO-MO,	Hück	el orbitals; Bor	n-Oppenhe	eimer				
approxima	ation, Potential end	ergy surface, Hellman-Feynman theorem.	Struc	ture and spectr	a of hydrog	genic				
atoms: Sej	paration of interna	l motion and radial solutions. Spectra of co	omple	x atoms: Spin-	orbit coupl	ings,				
term symb	ools, and selection	rules.	· .		1 .					
Outcome	I The students I	have a solid understanding of the electron	ic stru	icture of many	-electron	K)				
	atoms, the eff	ects of electron-electron interactions, and	the 1	interpretation of	of atomic	N2				
	spectra.									
	1 T 1 C C C C C C C C C C			<u>.</u>	• • • • • • • • • • • • • • • • • • • •	- f				
Objective	2 I ne fundamen	matter and the analysis of malegular open	opy, I	ocusing on the	interaction	IOI				
		matter and the analysis of molecular energy	gy sta	ites.						
Nolecular	· Spectroscopy		т	1	1. 4					
	on to spectral ene	Baltzman Distribution Internation of m	ra, In	nplications of	discrete er	ergy				
levels, Pop	malagular graatra	-Boltzman Distribution, Interaction of fa		on with matter	, origin of	inne				
Widths III Dotational	(Mierowaya) and	, Transition dipole moment and Fermis	Gold t ana	ten Kule. Last	mal mada	isers.				
analysis P	(Microwave) spe	Non Linear Spectroscopy, Nuclear quadru	n spec	enoscopy, Nor						
Outcome	To the correct	von-Effical Spectroscopy, Nuclear quadrup		ria tashniqua	their	V 2				
Outcome	2 10 the conce	and their significance in analyzing	mol	opic technique	ion and	ĸJ				
	interactions	and then significance in analyzing	mon	ceutar propert	ites and					
	interactions.	UNIT III								
	a a a a a		1	• • • • • • •	<u> </u>					
Objective	Students with	a comprehensive understanding of electro	chem	istry in solution	n, locusing	on				
	ion-solvent in	is relationships, and cleater showing called	e pote	entials, reference	e electrode	es,				
Fla - 4 h -	current-potent	al relationships, and electrochemical cells								
Electroche	emistry of Solutio	Electrochemistry of Solutions and Interfaces								
	mierv al calluan	s: Ion-solvent interactions ion-ion interac	tions	ionic migratic	n and diffi	ision				
Theories o	f Double-Laver st	s: Ion-solvent interactions, ion-ion interac	tions	, ionic migratic nd Chapman, t	on and diffu he Stern M	usion. Iodel.				
Theories o Adsorption	f Double-Layer st of ions and neut	s: Ion-solvent interactions, ion-ion interactions, ion-ion interactions, ion-ion interactions, ion-ion interactions, ion-ion	tions ouy a ferent	, ionic migratic nd Chapman, t ial capacitance	on and diffu he Stern M e measuren	usion. Iodel, nents.				
Theories o Adsorption Influence o	f Double-Layer st of ions and neuto of double layer on	s: Ion-solvent interactions, ion-ion interactions, ion-ion interactions, ion-ion interactions, ion-ion interactions, classed and compounds, Electrocaplillary and difficult charge transfer processes. Equilibrium e	tions ouy a ferent lectro	, ionic migratic nd Chapman, t ial capacitance de potentials,	on and diffu he Stern M e measuren Classificati	usion. Iodel, nents. on of				
Theories o Adsorption Influence o electrodes.	f Double-Layer st of ions and neut of double layer on Reference electro	s: Ion-solvent interactions, ion-ion interactions, ion-ion interactions, ion-ion interactions, diffuse-double-layer theory of Goral compounds, Electrocaplillary and difficult charge transfer processes. Equilibrium edes: Polarizable and non-polarizable systemetric destruction of the systemetric destruction of	tions buy a ferent lectro ms, 7	, ionic migratic nd Chapman, t ial capacitance de potentials, ypes of referen	on and diffe he Stern M measuren Classificati nce and wo	usion. lodel, nents. on of orking				
Theories o Adsorption Influence o electrodes. electrodes,	f Double-Layer st of ions and neut of double layer on Reference electro Current-potential	s: Ion-solvent interactions, ion-ion interactions, ion-ion interactions, ion-ion interactions, ion-ion interactions, diffuse-double-layer theory of Goral compounds, Electrocaplillary and difficult charge transfer processes. Equilibrium endes: Polarizable and non-polarizable system relationship (derivation of Butler-Volmer	tions buy a ferent lectro ms, 7 and 7	, ionic migration nd Chapman, t ial capacitance de potentials, Types of referent Cafel equations	on and diffe he Stern M e measuren Classification nee and wo here and wo	usion. Iodel, nents. on of orking				
Theories o Adsorption Influence o electrodes. electrodes, Types of o electroche	f Double-Layer st of ions and neut of double layer on Reference electro Current-potential over-potentials: or	s: Ion-solvent interactions, ion-ion interactions, ion-ion interactions, ion-ion interactions, diffuse-double-layer theory of Goral compounds, Electrocaplillary and diffic charge transfer processes. Equilibrium e des: Polarizable and non-polarizable systemetationship (derivation of Butler-Volmerigin and minimization, mechanism, Origin	tions buy a ferent lectro ms, T and T of er	, ionic migratic nd Chapman, t tial capacitance de potentials, Types of referen afel equations nf and classific	on and diffe he Stern M e measuren Classificati nce and wo). eation of	usion. lodel, nents. on of orking				
Theories o Adsorption Influence o electrodes. electrodes, Types of o electroche Outcome	f Double-Layer st of ions and neut of double layer on Reference electro Current-potential over-potentials: or emical cells. 3 The students 1	s: Ion-solvent interactions, ion-ion interactions, ion-ion interactions, ion-ion interactions, diffuse-double-layer theory of Goral compounds, Electrocaplillary and diffic charge transfer processes. Equilibrium edes: Polarizable and non-polarizable systement relationship (derivation of Butler-Volmer igin and minimization, mechanism, Origin earn principles of electrochemistry. inc	tions buy a ferent lectro ms, T and T and T of er	, ionic migratic nd Chapman, t ial capacitance de potentials, Types of referen Tafel equations of and classific	on and diffe he Stern M e measuren Classificati nce and wo). eation of	usion. Iodel, nents. on of orking K2				

	UNIT -IV	
Objective 4	Learn about the principles of statistical mechanics and their application	n to
	thermodynamics, molecular behavior, and chemical reactions.	
Molecular E	nergetics and Dynamics	
Statistical vie	ew of entropy. Laws of thermodynamics from statistical considerations Molecular vi	ew of
temperature a	and heat capacity. Boltzmann distribution. Thermodynamic quantities in terms of pa	rtition
functions. St	atistical mechanics of simple gases and solids. Equilibrium constant in terms of pa	rtition
functions. B	ose-Einstein and Fermi-Dirac statistics. Complex Reactions, Catalysis. Tempe	erature
dependence a	and Arrhenius law, Potential energy surfaces. Kinetic theory of collisions, Transition	state
theory. RRK	and RRKM theories. Reaction cross-sections, rate coefficients, reaction probabilities.	
Outcome 4	Students have a solid grasp of the statistical foundations of thermodynamics,	K2
	molecular interactions, and chemical kinetics. They will be equipped to analyze and	
	predict the behavior of systems, as well as understand the underlying principles	
	governing complex reactions and reaction rates.	
	UNIT- V	
Objective 5	The fundamental concepts of solid-state physics and the structure-property relationshi	ps of
	various types of solids.	
Solid State C	Chemistry	
Lattices and u	unit cells, Identification of lattice planes; Miller indices, separation of planes. Investigation	tion of
structure; X-r	ay diffraction, Bragg's law, Scattering factors. Metallic solids: Close packing, Less c	losely
packed struct	tures, Molecular solids, and covalent networks. The properties of solids; Mech	anical
properties: El	ectrical properties; formation of bands. Optical properties: Light absorption by mol	ecular
solids, metall	ic conductors, and semiconductors, Light emission by solid-state lasers and light-en	nitting
diodes.		
Outcome 5	Students understand crystal structures, solid-state properties, and the	K5
	behavior of various types of solids.	
Suggested l	Readings:	
Atkins, P.	, de Paula, J. (2006). Atkins' Physical Chemistry (8th ed.). Oxford University	
Press.		
Mc Quarri	Re, D. A. (1983). Quantum Chemistry. Oxford University Press.	
Levine, I. Banwell	R. (1995). Quantum Chemistry. Prentice Hall India (Ltd). C. M. McCash, F. M. (1983). <i>Fundamentals of Molecular Spectroscom</i> y. TataMcGra	W /
Hill_Barro	ow. G. M. (1962). Molecular Spectroscopy. McGraw Hill	vv
O'M. Boc	kris, J. J., Reddy, A. K. N. (1998). <i>Modern Electrochemistry</i> (2 nd ed.). Vol. I &II,	
PlenumPre	ess.	
Bagotsk V	V. S., Hoboken. (2006). Fundamentals of Electrochemistry (2 nd ed.). Wiley-Inter science	
Dill, K. A	., Bromberg, S. (2003). Molecular Driving Forces: Statistical Thermodynamics in	
Chemistry Ma Quarri	and Biology. Garland Science.	
Houston	P. L. (2001) Chemical Kinetics and Reaction Dynamics. McGraw-Hill Higher	
Education		
Anthony R	R. West, Solid State Chemistry and its Applications, John Wiley & Sons, 2014.	
•	<u> </u>	

Online Resour	Online Resources									
https://www.uou.ac.in/sites/default/files/slm/MSCPH-512.pdf										
https://www.uou.ac.in/lecturenotes/science/MSCPHY-										
17/Spectroscopy	17/Spectroscopy%20by%20Dr.%20Papia%20Chowdhury.pdf									
Brett Ch., Brett	A. Electrochemistr	y. principles, m	ethods, and appli	cations (Oxford, 1994)						
(T)(444s).pdf (h	nu.edu.jo)									
https://www.bh	u.ac.in/Content/Syl	labus/Syllabus_	30063128202004	29113633.pdf						
https://nios.ac.ii	n/media/documents	/313coursee/18.p	odf	-						
K1-Remember	K2-Understand	K3-Annly	K4-Analyze	K5-Evaluate	K6-Create					

Course designed by : Dr.T.Stalin

	Course Outcome vs riogram Outcomes									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	L(1)
CO2	S(3)	S(3)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)
CO3	M(2)	S(3)	M(2)	M(2)	S(3)	S(3)	S(3)	S(3)	M(2)	L(1)
CO4	S(3)	M(2)	S(3)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)
CO5	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	M(2)	S(3)	M(2)	M(2)
W.AV	2.4	2.6	2.2	2	2.2	2.8	2.4	2.4	2.2	1.8

Course Outcome Vs Program Outcomes

S-Strong (3), M-Medium (2), L- Low (1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	M(2)	S(3)	S(3)
CO2	L(1)	M(2)	M(2)	M(2)	S(3)
CO3	M(2)	M(2)	S(3)	S(3)	M(2)
CO4	M(2)	S(3)	M(2)	M(2)	M(2)
CO5	S(3)	S(3)	M(2)	S(3)	M(2)
W.AV	2.2	2.4	2.2	2.6	2.4

Course Outcome Vs Program Specific Outcomes

S-Strong (3), M-Medium (2), L- Low (1)

			Sem	ester - III				
Core	Co	urse code: 536304	Physic	al Chemistry-P	ractical	P	Credits: 5	Hours: 8
			EXP	ERIMENT - I				
Objec	ctive 1	To study the ac	id hydrolysis o	f ester based on	chemical	kine	tics and evaluate	the value
		of the rate cons	stants.					
Title: I	Kinetics	s - acid hydroly	sis of ester					
Outco	ome 1	Student Unders	standing Ester H	Hydrolysis and b	ased on cl	hemi	cal kinetics.	K5
			EXP	ERIMENT - II				I
Objec	ctive 2	To teach the Ki acids/determin	inetics-Acid hy ation of Ea.	drolysis of ester	-comparis	on o	f strengths of	
Title: H	Kinetics	-acid hydrolysi	is of ester-com	parison of strer	ngths of a	cids/	determination	of ea.
Outc	ome 2	The students s to kinetics acid-k	hould have a s	solid grasp of t	he fundar	nenta rmin	al concepts rela	ted K3
		Killeties, dela c	EXP	ERIMENT - III			ation	
Objec	ctive 3	To provide stud equilibrium ba	lents with a cor sed on the distr	nprehensive und ib <mark>ution law</mark> .	lerstandin	g of	the iodine- Iodin	.e
Title: I	Distribu	tion Law-Stud	y of iodin <mark>e-</mark> Io	dine equilibriur	n			
Outc	ome 3	The students Partition Coe	understanding fficient.	Distribution L	aw, Equil	ibriu	m Concepts,	K2
		L	EXP	ERIMENT- IV	T			I
Objec	ctive 4	To provide stu method	idents brief ki	nowledge about	acid-alk	ali t	itration by con	ductometry
Title: A	Acid-Al	kali titration by	y conductomet	ry				
Outc	ome 4	Students acquir conduct acid-a	re an understa lkali titrations u	nding of the te itilizing conduct	chniques cometric m	and netho	expertise need ds.	ed to K2
			EXP	ERIMENT -V				I
Objec	ctive 5	To gain know conductometry	ledge the disso titration.	olution constant	s of weal	k aci	ds with the hel	p of
Title: I	Determi	nation of disso	lution constan	ts of weak acids	by condu	ucto	metry	
Outco	ome 5	Students should the dissolution conductometric techniques.	d possess the ex constants of v c	xpertise and practive and practice weak acids through the second	tical skill ugh the ut	s nec tiliza	essary to ascerta tion of	in K3

	EXPERIMENT - VI						
Objective 6	To provide students brief knowledge about critical micelle concentration	by					
	conductometry						
Title: Determi	nation of Critical Micelle Concentration by conductometry						
Outcome 6	Students should have the understanding and practical expertise needed to	K3					
	ascertaincritical micelle concentrations through the application of						
	conductometric						
	techniques.						
	EXPERIMENT - VII						
Objective 7	To teach the redox titration by potentiometry method						
Title:Potentio	metric Titrations – Redox titration						
Outcome 7	Students should grasp potentiometric techniques in redox titrations, covering						
	theoretical concepts, practical electrode potential application, and quantitative						
	analysis for determining unknown analyte concentrations.						
	EXPERIMENT - VIII						
Objective 8	To teach the dissolution constant of weak acids by Potentiometric titrations.						
Title: Determi	nation of dissolution constant of weak acids by Potentiometric Titrations.						
Outcome 8	Students should be well-equipped to sound understanding of the	K4					
	theoretical						
	foundations, practical procedures, and data analysis methods necessary for						
	accurate determination of K _a values.						
	EXPERIMENT - IX						
Objective 9	To gain knowledge the freezing point activities						
Title: Determi	nation of activities by freezing point						
Outcome 9	students should be well-versed the relationship between freezing point	K4					
	depression, solute activity, and concentration, and possess the skills to conduct						
	accurate experiments and calculate activities in various solution systems.						
	EXPERIMENT - X						
Objective 10	To provide students brief knowledge about the principle of dipole moment						
Title: Determi	nation of dipole moment						
Outcome 10	students should appreciate the significance of dipole moments in understanding	K5					
	molecular properties and interactions						
	EXPERIMENT-XI						
Ohiective	To provide students brief knowledge about the quantum vield						
11	ro provide students orier knowredge usout the quantum yierd						
Title: Determi	nation of quantum yields						
Outcome 11	students should appreciate the significance of quantum yields in understanding	K4					
	and characterizing photochemical processes.						

		EXPERIN	MENT - XII						
Objective 12	To teach the heats of	vaporization	and depressions o	f freezing points o	f solutions.				
Title: Determi	nation of heats of va	porization an	d depressions of	freezing points o	f solutions.				
Outcome 12	students should equip	o to design	and conduct exp	periments, analyz	e data, and	K2			
	calculate these impor	tant propertie	s of solutions.						
EXPERIMENT - XIII									
Objective 13	To provide students v	with a compre	hensive understar	nding of the electro	odes with dif	ferent			
	substrates for H ₂ evo	lution							
Title: Determi	nation of Electrodes	with differen	it substrates for l	H ₂ evolution.					
Outcome 13	students should be e	quipped to de	esign and conduc	et experiments, an	alyze data,	K4			
	and draw conclusions related to the performance of different electrode substrates								
	for H ₂ evolution.								
		EXPI	ERIMENT - XIV	7					
Objective 14 To provide students brief knowledge about the photoelectrochemical solar cells working									
	principle.	iun L	and the						
Title: Determi	nation of Photoelect	ochemical so	olar cells.						
Outcome 14	Students should be e	equipped to d	esign and conduc	ct experiments, ar	nalyze data,	K4			
	and draw conclusion	is related to the	he performance o	of photoelectroche	mical solar				
	cells for solar energy	conversion.							
Suggested Re	eadings:								
1. Viswanath	nan, B., Raghavan, P.	S. (<mark>20</mark> 15). Pro	actical Physi <mark>c</mark> al C	Chemistry. Viva Bo	ooks.				
2. Levitt, B.	P. (1985). Findlay	's Practical	Physical Chemis	try Revised (9th	ed.).				
Longman,	London.								
3. Gurtu, J.	N., Kapoor, R., Cha	nd, S. & Co.	(1980). Advance	ed Experimental	Chemistry. V	Vol.I,			
NewDelhi	i, 1980.								
4. Rajbhoj, S Publicatio	S. W., Chondhekar, T. n, Aurangabad.	K. (2017). Sy	stematic Experim	ental Physical Ch	<i>emistry</i> . Anj	ali			
K1-Remember	K2-Understand	K3-Apply	K4- Analyze	K5-Evaluate	K6-Crea	te			
	Course designed by Dr.T. Stalin								

Course Outcome Vs Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)
CO3	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	L(1)	M(2)	M(2)	L(1)
CO4	M(2)	M(2)	S(3)	S(3)	M(2)	S(3)	L(1)	S(3)	M(2)	M(2)
CO5	M(2)	S(3)	L(1)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO6	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)
CO7	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)
CO8	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO9	M(2)	S(3)	L(1)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO10	M(2)	S(3)	L(1)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO11	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)
CO12	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)
CO13	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)
CO14	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	2.3	2.9	2.1	2.1	2.5	3	1.9	2.6	2.7	1.8

S-Strong(3), M-Medium(2), L- Low(1)

Course Outcome Vs ProgramSpecific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	L(1)	M(2)	S(3)	M(2)
CO2	S(3)	M(2)	S(3)	M(2)	S(3)
CO3	M(2)	M(2)	S(3)	M(2)	L(1)
CO4	M(2)	S(3)	S(3)	S(3)	L(1)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
CO6	M(2)	S(3)	S(3)	S(3)	L(1)
CO7	M(2)	M(2)	S(3)	M(2)	L(1)
CO8	M(2)	S(3)	S(3)	S(3)	L(1)
CO9	S(3)	S(3)	S(3)	S(3)	S(3)
CO10	S(3)	L(1)	M(2)	S(3)	S(3)
CO11	M(2)	S(3)	S(3)	S(3)	L(1)
CO12	S(3)	S(3)	S(3)	S(3)	S(3)
CO13	M(2)	M(2)	S(3)	M(2)	L(1)
CO14	S(3)	M(2)	S(3)	M(2)	S(3)
W.AV	2.4	2.2	2.8	2.6	1.9

S-Strong (3), M-Medium(2), L-Low(1)

	Elective Courses									
DSE	Course 5360	code: 51	Natural 1 Introductor	Products and y Biochemistry	Τ	Credits:4	Hours:4			
			UNIT	`-Ι	1					
Ob	jective 1	The sy	nthesis and reactivity	of some heterocyclic con	npound	s				
Hetero	Heterocyclic Compounds									
Heteroo	Heterocyclic compounds: Synthesis and reactivity of common heterocyclic compounds containing									
one or	one or two heteroatoms; Synthesis and properties of imidazole, oxazole, thiazole and indole,									
anthocy caffeine	anthocyanidins, cyanidinchloride, flavones and isoflavones, pyrimidines, purines, uricacid and caffeine.									
Ou	tcome 1	The st	udents will be able to	write the structure, synthe	esis and	l reactivity of	f K1			
		hetero	cyclic compounds							
			UNIT	- II						
Ob	jective 2	About	the types and structu	ral features of different s	teroids	and knowle	dge			
		regard	ing ORD and CD							
Steroids	s, ORD and	CD	al a	See the						
Steroids	: Types of	steroid	s – structure, stereoc	hemistry of cholesterol -	- Struc	tural feature	s of bile			
acids-Se	ex harmon	es–andr	osterone, testerostero	ne, estrone, estriol, estra	diol, pr	ogesterone-S	Structure			
of ergos	terol. ORI	D and C	D: Circular birefring	gence, optical rotary disp	persion.	circular dic	hroism–			
Cotton of	effect curv	ves–octa	nt rule– axial halok	tetone rule-Applications	of chi	ropticalprop	erties in			
configur	ational ass	Ignmen	IS.	understand the details also	nt atom	ida and ODI				
Ou	tcome 2	and C	D.	inderstand the details abo	ut stere					
			UNIT-							
Ob	jective 3	To lea and te	rn the structural eluci penoids	idation, <mark>st</mark> ereochemistry a	nd bios	synthesis of a	alkaloids			
Alkaloid	s and Ter	penoids	1000	ID EXCELLEN						
Alkaloid	s: Genera	metho	ls of structural elucie	dation of alkaloids- struc	ture an	d stereochen	nistry of			
the alka	loids: Qu	inine,	Morphine and Lyse	rgic acid- Biosynthesis	of all	kaloids. Ter	penoids:			
Classific	ation- Stru	icture, s	tereochemistry of Ca	mphor, Zingiberene and	Abietic	acid-Biosyn	thesis of			
terpenoi	$\frac{15}{100}$	Studen	ta vill ha ahla ta alua	idata the structure of all	alaida	and tomanai				
- Ou	tcome 5	Studen	ls will be able to eluc	hadie the structure of alk	aloids a	and terpenoid	15 K 4			
		and un								
	• .• .	T 1	UNII -		1	•, •				
Ob	jective 4	To lea	rn the structure and st	ereochemistry of antibioti	cs and	vitamins				
Antibio	tics and vit	amins	1 6	1 . 1		1 1				
Antibiot	ics: A de	tailed s	udy of structure and	d stereochemistry of pe	nıcıllın	, cephalospo	orin and			
ascorbic	acid, thia	nin, rib	oflavin and pyridoxin	e– Elementary aspect of	Vitami	n A, E, K and	d B12.			
Ou	tcome 4	Stude	nts will understand the	e details about structure a	nd stere	ochemistry	K3			
		of the	antibiotics and vitam	ins.		·				
I										

		UNIT– V								
Objective 5	To acquire the know	ledge of biochem	nical aspects-m	etabolism, anabol	lism and					
	catabolism.									
Biochemistry	Biochemistry									
Structure and fu	Structure and functions: Aspects of structure and classification of carbohydrates, lipids, amino									
acids, proteins an	d nucleic acids. Flow	v of genetic info	rmation, natur	e of genetic code	e, replication					
DNA, transcriptio	on and translation, reg	gulation of gene	expression.							
Metabolism: Bi	oenergetics, thermo	odynamic cons	iderations, re	dox potentials,	bioenerge					
principles. Catabo	olism and anabolism;	; Enzymes invol	ved, catalytic 1	nechanism and r	egulatory ste					
in glycolysis, TC	A cycle, mitochondri	al electron trans	port and oxida	tive phosphoryla	tion.					
Outcome 5	Outcome 5Student gain the knowledge and understanding of biochemistry aspectsK5									
Suggested Readi	Suggested Readings:									
Finar, I.L. (200	4). Organic Chemistr	ry (5thed.). Vol.	I&II, Pearson I	Education, Singa	pore.					
Ahluwalia, V.K	Ahluwalia, V.K., LalitaS.Kumar., SanjivKumar. (2006). Chemistry of Natural Product. Ane									
Book's India, N	NewDelhi-2006.	and the same								
Agarwal, O.P. ((1988). Chemistry of	Organic Natural	Products.Vo 1	I&II, Goel publi	shing					
House.										
Gupta, R.R., K	umar, M., Gupta, V.	(2009). Heterocy	yclic Chemistr	y II (2^{na} ed.).						
NewDelhi.										
Kalsi, P.S. and	Sangeethajagtap. (20	13). Pharmaceut	<mark>ical</mark> Medical a	nd Natural Produ	ct. Narosa					
International P	rivate Limited, NewD	Delhi.								
Ahluwalia, V.K	K. (2013). Heterocycl	ic Chemistry-II,	Narosa Interna	ational Private Li	mited,					
NewDelhi.			- i ond							
Krishnamoorth	y, N.R. (2010). Chen	nistry of Natural	Products (2 nd	ed.) Hyderabad.	~ 11 1					
Gurdeep R. Ch	atwal. (2007). Organi	ic Chemistry of	Natural Produc	cts (4 th ed.). New	Delhı.					
Joule, J.A., Sm	1th, G.F. (1978). Hete	erocyclic Chemi	stry.Van Notra	nd Reishord Co.	, London.					
Syed Aftab Iqb	al. (2011) . Chemistry	of Natural Proc	lucts. Discovei	Publishing Hou	se Private					
Limited, NewL	Limited, NewDelhi.									
Atta-Ur-Kahma	an, Choudhary, M.I. (1998). New Tre	nas in Natural	Product Chemist	ry(1sted.)					
Gordon& Brea	K2 Used angetage d	S.	VA Angles	V5 Fugles at -	V(Cuarte					
AI-Kemember	N2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	Ab-Create					
	Course designed by Dr.M. Sundrarajan and Dr S. Umadevi									

CourseOutcome Vs ProgramOutcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	M(2)	L(1)	M(2)	S(3)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	M(2)	L(1)	S(3)	M(2)	M(2)	S(3)	S(3)	S(3)
CO3	L(1)	S(3)	M(2)	S(3)	M(2)	L(1)	L(1)	S(3)	M(2)	L(1)
CO4	S(3)	M(2)	S(3)	S(3)	L(1)	S(3)	M(2)	S(3)	M(2)	(-)
CO5	M(2)	S(3)	L(1)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	-
W.A V	2.2	2.4	2	2.4	2	2.4	2	2.8	2.2	1

S-Strong (3), M-Medium(2), L-Low(1)

CourseOutcomeVsProgramSpecificOutcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	L(1)	M(2)	L(1)	L(1)
CO2	L(1)	M(2)	L(1)	M(2)	S(3)
CO3	M(2)	M(2)	S(3)	M(2)	L(1)
CO4	M(2)	S(3)	× _	L(1)	L(1)
CO5	S(3)	L(1)	L(1)	L(1)	-
W.AV	1.8	1.8	1.4	1.4	1.2

S-Strong(3),M-Medium(2),L-Low(1)

DSE	Course code:	Instrumental Methods of Analysis	Т	Credits:4	Hours:4			
	536052							
		UNIT - I						
Objective 1	To acquire know	edge in chromatographic techniques						
Separation Te	chniques							
Theory of chron	natography, mechani	sm-adsorption and partition-classific	cation-	column, pap	er and			
thin layer chron	natography–Gas Chr	omatography (GC), GC/MS, LC/MS-	High H	Performance	Liquid			
Chromatograph	y(HPLC), Ion Excha	nge Chromatography.	U		1			
Outcome 1	The students	will understand the di	fferent	t	K2			
	chromatographic	techniques.						
	01	UNIT - II						
Objective 2	The types of erro	rs						
Error Analysis								
Classification c	of errors-accuracy-p	recision-minimization of errors. Sig	nificar	nt figures. I	Mean and			
standard deviat	ion andomand norr	nal errors. Comparison of results.	Stude	nt-tests curv	e fitting-			
multiple linear r	egression, correlatio	n co-efficient.			6			
Outcome 2	Example 2 Students would be understanding and analyze the error. K3							
		UNIT - III			_			
Objective 3	To learn the princ	ciple and applications of spectrometric	c techr	niques				
Snectrometric	Techniques			1				
Principles and a	applications of Ator	nic Absorption Spectrometry (AAS)	١,					
Atomic Fluores	cence Spectrometry,	Atomic Emission Spectrometry(AES	5)- Flai	me photomet	ry-			
Atomic Mass s	pectrometry.		,	1				
Outcome 3	Students will be a	able to understand the principles of sp	ectron	netric	K4			
	techniques and ki	nowledge about their application.						
		UNIT - IV			1			
Objective 4	To acquire the kr	owledge about thermal and surface a	nalysis	s techniques				
Thermal and S	urface Analysis	CONTRACTOR DESCRIPTION						
Principles and	applications of Th	ermo gravimetry (TG)- Differential	l Ther	mal Analysi	s (DTA)-			
Differential Sca	nning Calorimetry (DSC)- Thermo Mechanical Analysis	(TMA	A) –BET Sur	face Area			
Analyzer -X-ray	y diffractometer (XR	D)- X-ray photoelectron spectroscop	oy (XI	PS)-Scanning	g Electron			
Microscopy (SE	EM)-Transmission El	ectron			-			
Microscopy (TE	EM) -Atomic Force N	Aicroscopy (AFM).						
Outcome 4	Students will lear	n about different thermal and surface	analys	sis technique	s K2			
	and able to apply	for characterization.						
		UNIT - V			1			
Objective 5	To acquire the kn	owledge of electro analytical method	.S					
Electro analyti	cal Methods							
Electroanalytica	l techniques: Princip	bles of Amperometry, Potentiometry,	Electr	ogravimetry	,			
Voltammetry, S	tripping Voltammetr	y methods, Electrochemical sensors.						
Applications to	chemical and biolog	ical systems.						
Outcome 5	Student gain the	knowledge, understanding and application	ations	of	K2			
	electroanalytical	methods.						

Suggested Readings:

Vogel, A.I. (1987). TextBook of Quantitative organic Analysis (3rd ed.). ELBS. Chatwaland Anand.(2000). Instrumental methods of chemical analysis. Himalaya publishing House, NewDelhi. Valcarcel.(2000). Principles of Analytical Chemistry, Springer-Verlag, Berlin. AllenJ.Bard. Faulkner., JohnWileyandSons.(1983). Electrochemical Methods, Fundamentals and Applications. New York. Gary.D.Christian, John Wiley and Sons.(2003). Analytical Chemistry. NewYork. Willard Merit Dean and Settle.(1986). Instrumental Methods of Analysis (4th ed.). CBS Publishers. Schoog, Holler, Crouch.(2004). Principles of Instrumental Analysis, (6th ed.). Asia Pvt.Ltd., Singapore. D.A.Skoog, D.A., West, D.M. (2004). Fundamentals of Analytical Chemistry (4th ed.) Winston Publications. SkoogandWests.(2014). Fundamentals of Analytical Chemistry (9th ed.). Winston Publications. Lakowicz, J.R. (2006). Principles of Fluorescence Spectroscopy (3rd ed.). Springer, New York. K1-Remember **K2-Understand** K3-Apply K4-Analyze K5-Evaluate K6-Create Course designed by Dr.M. Sundrarajan and Dr S. Umadevi

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0
C01	M(2)	L(1)	M(2)	S(3)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	M(2)	L(1)	S(3)	M(2)	M(2)	S(3)	S(3)	S(3)
CO3	L(1)	S(3)	M(2)	S(3)	M(2)	L(1)	L(1)	S(3)	M(2)	L(1)
CO4	S(3)	M(2)	S(3)	S(3)	L(1)	S(3)	M(2)	S(3)	M(2)	(-)
C05	M(2)	S(3)	L(1)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	-
W.A V	2.2	2.4	2	2.4	2	2.4	2	2.8	2.2	1

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	L(1)	M(2)	L(1)	L(1)
CO2	L(1)	M(2)	L(1)	M(2)	S(3)
CO3	M(2)	M(2)	S(3)	M(2)	L(1)
CO4	M(2)	S(3)	-	L(1)	L(1)
CO5	S(3)	L(1)	L(1)	L(1)	-
W.AV	1.8	1.8	1.4	1.4	1.2

Course Outcome Vs Program Specific Outcomes

S-Strong(3),M-Medium(2),L-Low(1)

DSE	C	ourse Code:	Spectroscopic Methods of Analysis	Τ	Credits:4	Hours:4			
		536053							
UNIT- I									
Objective 1 To acquire knowledge about UV-Vis, IR and Raman spectroscopy techniques									
UV-Vis, IR	and l	Raman Spectros	сору						
UV-Visible	spect	roscopy: Simple	chromophoric groups-conjugated and an	romat	ic systems-ele	ectronic			
excitations-	factor	s that affect the	position and intensity of absorption bar	nds-B	eer's-Lamber	t's law-			
Woodward-	-Fisher	rules for spect	ra of dienes, α , β -unsaturated ketones		and aromatic o	carbonyl			
compounds	–-char	ge transfer com	plexes. IR Spectroscopy: Predicting nu	mber	of active m	odes of			
vibrations-	Hook	's Law-Characte	ristic group frequencies of organic an	nd in	organic com	pounds-			
Effects of	subst	itution, conjugat	ion, bond angle and hydrogen bond	on	carbonyl vib	rational			
frequencies	- IR s	pectra of metal	complexes. Raman Spectroscopy: Ram	an sp	ectra of				
simple orga	nic an	d inorganic mole	cules-resonance and surface enhanced re	sonan	ce Raman sca	ttering.			
Outcon	ne 1	Students will le	earn about the techniques and will be ab	le to	apply in the	K2			
		analysis of orga	nic and inorganic compounds						
		I	UNIT - II						
Objecti	ive 2	To acquire knov	ledge and understanding of NMR spec	etrose	ору				
NMR Spec	trosco	ру							
NMR Spect	troscop	by: NMR Phenon	nenon–NMR spectroscopy of compound	s cont	aining spin ¹ / ₂	nuclei			
$ (^{1}\text{H}, ^{1}\text{C}, ^{3}\text{P}) $	P , ¹⁹ F , ¹	Al, B, Si)-chemio	cal shift (δ) – HNMR- inductive and ani	sotroj	pic effects on	δ–			
spin–spin c	ouplin	ig and coupling	constant J–geminal, vicinal and long-r	ange	coupling-fac	tors			
that affectth	nese p	arameters, Karplu	is equation. ¹³ C NMR Broad-band and o	off-res	sonance deco	upling			
and gamma	gauc	he effect-Nuclear	Overhauser Effect – Applications of NN	IR in	inorganic and	Ĺ			
organometa	llic da	may Simplification	n of complex NMR spectra-shift reagent	s-dou	ble resonance	;-			
deuterium e	exchan	ge reactions –hig	h fields.						
Outcon	ne 2	Students unders	tand the technique and will be able to app	oly foi	the	K2			
		structural elucio	lation						
			UNIT - III						
Objecti	ive 3	To learn about	different two dimensional NMR spectros	copy	and EPR spec	ctroscopy			
Two Dimer	nsiona	I NMR and EPF	R Spectroscopy						
Two dimens	sional	NMR: COSY(H-	H, C-H), INADEQUATE, HMBO	C, DE	PT and NOES	SY.EPR			
Spectroscop	oy: Ze	eman splitting,	introduction to zero-field splitting, g-v	alues,	anisotropyin	g-values,			
hyper fine	hyper fine and superhyper fine coupling constants, -selected applications inorganic inorganic								
compounds	Cu, N	In and V complex	xes, EPR of complexes having spin>1/2.						
Outcon	ne 3	Students will be	able to understand the technique and appl	y in s	tructural	K4			
		elucidation							

	UNIT - IV							
Objective 4	To learn about the Mass and Mossbauer Spectroscopy							
Mass and Mossb	auer Spectroscopy							
Mass Spectroscopy: molecular ion, isotope abundance, fragmentation processes of organicmolecules,								
McLafferty Rearrangement-deduction of structure through mass spectral fragmentation, high								
resolution MS, softionization methods, ESI-MS and MALDI-MS, studies of inorganic/ coordination								
and organometallic representative compounds. Hypenated techniques. Mossbauer spectroscopy -								
Mossbauer effect, recoilless emission and absorption, hyperfine interaction, chemical isomershift.								
magnetic hyperfine and quadruple interaction and interpretation of spectra-Fe, Sn.								
Outcome 4	Students understand and will be able to apply Mass and Massbauer K4							
	techniques for structural analysis of compounds							
	UNIT - V							
Objective 5	To learn the use of spectroscopic instruments							
Spectroscopic La	aboratory							
Use of spectrosco	opic instrumentation to obtain familiarity with important types of spectrometers and							
spectroscopic me	thods, spectrometers include electronic ultraviolet/visible absorption, fluorescence,							
Raman, Fourier tr	ransform infrared and nuclear magnetic resonance, Mass and EPR spectroscopic							
techniques.								
Outcome 5	Students will be able handle the spectroscopic instruments for K3							
	the analysis of the compounds							
Suggested Readi	ings:							
Kalsi, P.S. (1993	5). Spectroscopy of Organic Compounds. Wiley Eastern Ltd., Madras.							
ChatwalandAn	and.(2000).Instrumental methods of chemical analysis. Himalaya publishing							
House NewDe	lhi.							
Silverstein,R.N	A.,Bassler,C.G.,Morril,T.C.(2002).Spectrometric identification of organic							
compounds(6tl	hed.). JohnWiley&Sons, NewYork.							
Banwell,C.N.,I	E.M.McCash,E.M.(1994). Fundamentals of Molecular Spectroscopy (4thed.).							
McGraw-Hill,	NewYork.							
Keelar, J. (2002).Understanding NMR Spectroscopy. Wiley, Germany.							
Williams, D.H.	Fleming, I. (1988). Spectroscopic methods inorganic chemistry. I ata McGraw Hill.							
Hollas M I (20	7).Organic Spectroscopy(2nded.).ELBS-Macminan.							
Willard R Mei	rit Dean and Settle (1986) Instrumental Methods of Analysis(4thed) CBS Publishers							
Schoog Holler	Nieman Thomson (2004). Principles of Instrumental Analysis (416d.). CDS I double is							
Singapore.								
SkoogD.A.,We	est, D.M. (2004). Fundamentals of Analytical Chemistry (4thed.). Winston Publications.							
Mermet,J.M.,O	tto,M.,Kellner,R.(2004).Analytical chemistry:a modern approach to analyti cal							
science. Wiley-	-VCH.							
Rouessac,F.,Ro	buessac,A.(2011).ChemicalAnalysis:Modern Instrumentation							
MethodsandTe	chniques(2nded.). Wiley & sons, USA.							
Kemp, W.(1980	b). NMR in Chemistry. MacMillan Ltd.							
K1_Romombor	K2-Understand K3-Annly KA Analyze K5 Evaluate K6 Create							
AI-Aemember	<u>A2-Onuersiana</u> <u>A3-Appiy</u> <u>A4-Analyte</u> <u>A3-Evaluate</u> <u>A0-Create</u>							
	Course designed by Dr.M. Sundrarajan and Dr S. Umadev							

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО
										10
CO1	M(2)	L(1)	M(2)	L(1)	M(2)	L(1)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	M(2)	M(2)	L(1)	S(3)	M(2)	M(2)	M(2)	S(3)	M(2)
CO3	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	M(2)	S(3)	M(2)	L(1)	S(3)	M(2)	S(3)	M(2)	(-)
CO5	M(2)	L(1)	L(1)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	-
W.A V	2.6	1.8	2.2	1.8	2	2.4	2	2.6	2.2	1.2

Course Outcome Vs Program Outcomes

S-Strong (3), M-Medium (2), L-Low(1)

Course Outcome Vs Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	L(1)	M(2)	L(1)	L(1)
CO2	M(2)	S(3)	M(2)	M(2)	S(3)
CO3	S(3)	M(2)	S(3)	M(2)	M(1)
CO4	M(2)	S(3)	(LENSIL)	S(3)	L(1)
CO5	L(1)	M(2)	L(1)	L(1)	-
W.AV	2	2.2	1.6	1.8	1.2

S-Strong(3),M-Medium(2),L-Low(1)

DSE	Cours	e code:	Environmental and Green Chemistry	Т	Credits:4	Hours:4				
		JUJ 1	UNIT - I							
Obi	ective 1	To unde	rstand (i) quality of air, water (iii) gre	en che	emistry, (iv) s	ustainable				
j		chemist	ry and technologies.		, (- ·) -					
Air and	l Water									
Air Qua	lity and	pollution:	Bio-geo chemical cycles: Carbon, Ox	ygen, Ì	Nitrogen, Pho	osphorous				
and Sulphur. Classification of air pollutants, sources of air pollution and control methods.										
Effects	Effects of air pollutants: ozone depletion, acid rain, green-house effect, climate change,									
global	warming.	Water (Quality and pollution: Water Quality	y parai	meters: colou	r, odour,				
tempera	ture, tur	bidity, ha	rdness, alkalinity, pH, conductivity,	catior	ns, anions, S	S, VOC,				
TDS, D	O, BOD	, COD, n	icronutrients, heavy metals and coli-	form.	Potable wate	r quality-				
Industri	al water	quality, S	ources of water pollution.							
Outcome 1 The students would be able to know the environmental quality of air k and water.										
			UNIT - II							
Obj	ective 2	Students	will know about purification method	s for v	vater					
Water	Treatme	nt	ALAGAPPA UNIVERSITY							
Pre and	primary	methods	aeration, filtration, sedimentation, p	recipit	ation, coagula	ation and				
floccula	tion, dis	infection.	Secondary methods: activated slue	dge, t	rickling filter	rs, RBC,				
anaerob	ic diges	tion, lago	ons and ponds. Tertiary/ Advanced	meth	ods: activated	1 carbon,				
ultra fi	iltration,	ion-exch	ange, electrodialysis, reverse osm	osis,	Industrial w	astewater				
treatmen	nt.									
Out	tcome 2	To acqui	re info <mark>rmation regarding d</mark> ifferent pu	rificati	on process of	K2				
		water	UNIT - III							
Obj	ective 3	To intro	luce green chemistry and its applicati	on						
Green	Chemist	ry Basics								
Define	Green cl	nemistry -	- Difference between green and env	ironme	ental chemist	ry - The				
need of	green ch	emistry –	basis of green methods and green pro-	ducts -	12 principles	s of green				
chemist	ry and t	heir illus	trations with examples-Synthesis in	volvin	g principles	of green				
chemist	ry (capro	olactam, a	dipic acid, vanillin, methyl methacry	late, p	aracetamol, il	buprofen,				
citrol, a	and poly	carbonate) - Planning a green synthesis in	nac	hemical labo	oratory –				
Comme	rcial gree	en product	s –Advantages and disadvantages of s	green p	products.					
Out	tcome 3	Students	will know the principles of green ch	emistry	y and their	K4				
		applicati	on in synthesis of some of the comme	ercially	/ important					
		compour	nd.							
Oh:	octive 1	Informat	UNII - V	ountha	cic					
Dosign	ecuve 4	n Synthe	tion regarding the designing of green	synnie	515					
Choice	of startin	n syntnes ng materia	lls, reagents, catalysts, biocatalysts, r	olvme	er supported of	catalysts.				
solvents	s (water,	ionic liq	uids, fluorous solvents, supercritical	CO2). Green read	ctions of				
Arndt-I	Eistert sy	nthesis, Ba	arton reaction, Claisen rearrangement,	Darze	n reaction,					

Grignard reagent, Heck reaction, Knoevenagel condensation, Mukaiyamma reaction, Reformat sky reaction, Streker synthesis, Ullmann reaction, Wurtz reaction - Renewable chemicals from biomass and sustainable polymers (polylactide). Ultrasound assisted reactions: esterification, reduction, coupling reactions. Electroorganic synthesis.

Outcome 4 Students will learn the designing of green synthesis for some of the	Students will learn the designing of green synthesis for some of the K2									
important organic reactions										
UNIT -V										
Objective 5 To provide information regarding environmental benign technologies										
Sustainable and Environmental Benign Technologies										
Solvent free microwave assisted organic synthesis- Reactions on solid supports, p	hase									
transfer catalysis, solvent free esters saponification - Reactions without support reagent or										
catalyst (microwave assisted reactions in water, oxidation of toluene to benzoic acid)-										
Microwave induced green synthesis - Benefits and limitations of microwave. Traditional	l and									
green synthesis of some organic compounds- Reduce or reduction in materials, energy, wa	aste,									
non-renewable, cost and risk hazards as greener alternatives for sustainable developm	nent									
Carbon capture, carbon storage, carbon sequestration, carbon foot print and carbon tradin	ng.									
Outcome 5The students would be able to know the environmental quality of air and water, green chemical process, sustainable methods.	Outcome 5The students would be able to know the environmental quality of airK2and water, green chemical process, sustainable methods.									
Suggested and readings:										
1. De,A.K.(2003). Environmental Chemistry. NewAge International.										
2. Shangi, R., Srivatsava, M.M. (2003). Green Chemistry. Narosa Publishers,										
NewDelhi.										
3. Harnung, S.E., Johnson, M.S. (2012). <i>Chemistry and the Environment</i> . Cambridge										
University Press.										
4. Jacobson, M.Z. (2012). Air Pollution and Global Warming(2 ed.). Cambridge										
University Press.										
5. Bear, J.M.(2013). Environmental Chemistry in Society. CRC press.										
6. Anasta, P.1. (2000). Green Chemistry: Theory & Practice. Oxford University Press.										
7. Marteel-Parrish, A.E., Abraham, M.A. (2014). Green Chemistry and Engineering: A										
Funway losuslainadilly. wiley. 8 VK Abluwalia VK (2006) Green Chemistry-Fuvironmentally benian Peretions.	Ane									
Books India.	THU									
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Crea	ate									
Course designed by: Dr. M. Sundrara	ijan									

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1
										0
CO1	S(3)	M(2)	S(3)	M(2)	L(1)	M(2)	M(2)	M(2)	M(2)	M(2
CO2	M(2	S(3)	S(3)	M(2)	L(1)	M(2)	S(3)	S(3)	M(2)	M(2)
CO3	M(2	M(2)	S(3)	M(2)	S(3)	M(2)	S(3)	M(2)	S(3)	L(1)
CO4	M(2	M(2)	S(3)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2
CO5	S(3)	M(2)	S(3)	M(2)	L(1)	M(2)	M(2)	M(2)	M(2)	M(2)
W.A V	2.4	2.2	3	2	1.6	2.2	2.6	2.2	2.2	1.8

Course Outcome VS Programme Outcomes

S-Strong (3),M-Medium(2),L-Low(1)

Course Outcome VS Programme Specific

-see %

Outcomes										
CO	PSO1	PSO	PSO	PSO	PSO5					
		2	3	4						
CO1	S(3)	M(2)	M(2)	M(2)	M(2)					
CO2	M(2)	M(2)	S(3)	M(2)	M(2)					
CO3	S(3)	M(2)	L(1)	M(2)	M(2)					
CO4	M(2)	M(2)	S(3)	S(3)	M(2)					
CO5	S(3)	M(2)	M(2)	M(2)	M(2)					
W.A	2.6	2	2.2	2.2	2					
V			-							

S–Strong (3), M-Medium(2),L-Low(1)

DSE	Course		Т	Credits:4	Ho	urs:4				
	Code:	Materials Chemistry								
	536055									
		UNIT– I								
Objecti	vel To know about the	structure of crystals								
Structu	re of Crystals									
Amorph	Amorphous Vs crystalline solids, types of bonding in solids-Unit cell-Crystal lattices-									
Crystal imperfections-Phase transformation diagrams-Physical properties of crystals-										
Classification of solids based on zone theory- Energy bands in solids-Band theory-										
Classification of solids based on band theory.										
Outcome1The students would learn the basics of crystalsK4										
	·	UNIT-II								
Objecti	ve2 To provide inform	ation regarding superconductors	s and s	semiconducto	ors					
Superc	onductors and Semicon	ductors								
Introduc	ction- Properties and typ	es of super conductors- High te	empera	ture super co	onduc	ctors-				
Applica	tions of superconductor	s. Semiconducting materials- P	roperti	ies of semico	onduc	ctors-				
Determi	nation of band gap	and types of semic onductor	ors-Va	rious applic	ation	is of				
semicor	ducting materials.									
Outcon	ne2 Students will learn	the properties and applications	of sup	perconductors	5	K3				
	and semiconductor	s								
UNIT-III										
Objecti	ve3 To provide inform	ati <mark>on</mark> re <mark>gar</mark> ding dielectric and ir	nsulati	ng materials						
Dielect	ric /Insulating Material	s								
Introduc	ction- Physical, chemic	al and electrical properties-C	lassifi	cation-Testir	ng o	f				
insulati	ng materials– Important	applications of insulators. Ferro	electr	ic materials-	- 1					
Classifi	cation offerroelectric ma	aterials–Piezoelectric materials–	Applic	cations of fer	roele	ctric				
Outco	me3 Students will learn	the properties of dielectric and	insula	ting material	s	K4				
Outeo		UNIT-IV				1117				
Obiecti	ve4 To provide inform	ation regarding magnetic mater	ials							
Magnet	tic Materials	8 8 8								
Introduc	ction-Types of magnetic	c materials–Diamagnetism–Para	amagn	etism–Ferrroi	magn	etism				
–anti-	ferromagnetism –Mag	gnetic hysteresis–Soft and	hard	magnetic n	nateri	ials–				
Ferrima	gnetic materials(or)Ferri	tes–Applications of ferrites.		C						
Outcon	ne4 Students will learn	about the properties and applic	cation	of magnetic		K4				
	materials									
	- T 1 1 C	$\frac{\mathbf{UNII} - \mathbf{V}}{\mathbf{U} + \mathbf{V}}$	- (1	1 0	<u>, .</u>	1				
Objecti	ve5 10 provide informa	ation regarding the preparative	metho	ds of nanoma	ateria	IS				
Prepara	ative Methods					41 1				
	1 $(1 $ 1 1 1 1	reaction method, sol-gel m	ietnoa,		n me	etnoa,				
hydroth	ermal method and m	incrowave neating method. I	nysica	ai methods-	- va					
evapora	tion, sputtering, pulse	a laser deposition, molecula	ar bea	am epitoxy	met	nods.				
Chemic	ai methods-chemical	vapour deposition, chem	nical	solution c	iepos	sition,				
electroc	hemical deposition, spra	y pyrolysis.			<u> </u>					
Outcom	e5 Students will acqui	ire the information regarding th	e prep	arative metho	ods	K2				

Suggestion and readings:

VanvlakL.H.(1975). *Elements of Materials Science and Engineering*. Addision&Wiley, NewYork.

Goswami, A. (1996). Thin Film Fundamentals. NewAge International (P)Ltd, NewDelhi.

V.Raghavan, V.(2004). Materials Science and Engineering-a first course,

(5thed.).Prentice Hallof India.

Jayakumar, S. (2002). Materials Science. R.K. Publishers, Coimbatore.

Khanna,O.P.,Dhanpat Rai&Sons.(1996). *A Textbook of Materials Science and Metallurgy*., Delhi.

WilliamD.Callister.(2006).*Material Science and Engineering-An Introduction*. JohnWiley& Sons ,Inc.

David.G.Rethwisch,WilliamD.CallisterJr.(2007).*Fundamentals of Material Science and Engineering:An Integrated Approach*(3rded.).John Wiley& Sons,Inc.

Ward, D.J. (2008). Material Science. Lerner Publishing Group.

AlexanderJ.Blake, WilliamClegg, JacquelineMCole. (2009). Crystal structure analysis:

principles and practice. Oxford Science, NewYork.

PeterY.Yu, Manuel Cardona. (2010). Fundamentals of Semiconductors: Physics and

Materials properties (4th ed.). Springer-VerlagBerling Heidelberg.

RamNaresh, Prasad Choudhary, Sunanda Kumari Patri. (2009). *Dielectric* Materials: Introduction, Research and Applications. Nova Science Publishers.

K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create

Course designed by: Dr G. Gopu

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	S(3)	M(2	L(1)	M(2)	M(2	M(2	M(2	M(2)
))))	
CO2	M(2)	M(2)	S(3)	M(2	L(1)	M(2)	S(3)	M(2	M(2	M(2)
)))	
CO3	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	M(2)	M(2)	S(3)	M(2	M(2)	M(2	M(2	M(2	M(2)
))))	
CO5	S(3)	M(2)	S(3)	M(2	L(1)	M(2)	M(2	M(2	M(2	M(2)
))))	
W.AV	2.8	2.2	2.6	2.4	1.6	2.2	2.4	2.2	2.2	2.2

Course Outcome VS Programme Outcomes

-S-Strong (3),M-Medium(2),L-Low(1)

Course Outcome VS Programme Specific Outcomes

S 8 0-

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	M(2)	M(2)	M(2)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	M(2)	L(1)	M(2)	M(2)
CO4	S(3)	M(2)	L(1)	M(2)	M(2)
CO5	S(3)	M(2)	M(2)	M(2)	M(2)
W.AV	3	2.2	1.8	2.2	2.2

S-Strong (3),M-Medium(2),L-Low(1)

DSE (Course		Chemical and Electrochemical				Т	Credits:4		Hours:4	
5	536 056			Energy Systems							
	50 05	0		1	JNIT - I						
Objectiv	Objective 1 To get knowledge in chemical and electrochemical energy systems										
	including nuclear, electrochemical, hydrogen and solar.										
Energy and Environment											
Available energy options, their advantages and disadvantages. Environmental effects,											
comparative evaluation of energy options and energy needs. Fossil fuels: petroleum, natural											
gas and coal - Origin, processing and production of value-added products - available											
current conversion technologies.											
Outcome 1The students would be able to acquire knowledge in various typeenergy systems and their applications.					es of	f K4					
UNIT - II											
Objectiv	ve 2	Top	provide	informa	tion abo	ut nuclear e	energy				
Nuclear En	ergy			1.000	4 L100	0,00,00					
Nuclear Ene	ergy:	Prin	nciples o	of Fissic	on - Fiss	ion reactor	s, U e	nrichn	nent and p	roces	ssing of
spent fuels.	. Nuc	lear	reactor	kineti	cs and	control- nu	clear	fusion	- magnetic	e an	d other
confinement	t- eval	luati	on of the	e option	of nucle	ear energy. I	Nuclea	r pow	er in India.		
Outcom	ne 2	Stuc	dents wi	ll acqui	re knowl	ledge about	nuclea	ar ener	rgy		K3
				τ	JNIT - II						
Objectiv	ve 3	To i	impart k	nowled	ge about	electrocher	mical e	energy			
Electrocher	mical	Ene	ergy	8							
Electrochemical power sources - theoretical background on the basis of thermodynamic and											
kinetic considerations. Primary cells - various types, especially magnesium and aluminum											
based cells - magnesium reserve batteries. Secondary cells: classification based on											
electrolyte t	type,	temp	perature	of ope	ration o	n the basis	s of el	ectroc	les - chem	istry	of the
main secon	dary b	atter	ries-Batt	teries fo	or electri	c vehicles-p	resent	status	•		
Outcom	ne 3	Stuc	dents wi	ll acqui	re know	ledge about	electro	ochem	ical energy	r	K4
				UI	NIT - IV						
Objectiv	ve4	Top	provide	informa	tion rega	arding fuel	cells a	nd hyd	lrogen fuel	cells	3
Fuel Cells a	and H	ydro	ogen Fu	el							
Fuel cells-c	classif	icati	ion- chei	mistry c	of fuel ce	lls-detailed	descri	ption	of hydrogei	ı/oxy	gen fuel
cells - methanol - molten carbonate solid polymer electrolyte and biochemical fuel cells.									iel cells.		
Hydrogen as a fuel- production (thermal, electrolysis, photolysis and photoelectrochemical)											
storage and applications of hydrogen storage											
Outcom	ne 4	Stuc cells	dents wi s	ll acqui	re knowl	ledge about	fuel co	ells an	d hydrogen	fuel	K3
					UNIT - '	V					
Objectiv	ve 5	To p	provide	informa	tion rega	arding solar	energ	у			
Solar Energ	gy										
Solar energy conversion devices-photovoltaic cells-photoelectrochemical cell											
semiconductorelectrolyte junctions'photocatalytic modes for fuel conversion process-											
photobio cl	hemic	al op	ptions.	11 . '	1 1	- 1 - 1 - 1					174
Outcom	16 5	Stuc	aents wi	II acqui	re know	ledge about	solar e	energy	1		K4

Suggestions and readings.									
Suggestions and readings.									
Vincent, C.A. (1984). Modern Batteries, Edward Arnold.									
Narayanan, R., Viswanathan, B. (1997). Chemical and Electrochemical energy									
systems. Orient Longmans. Sriram, K. (1990). Basic Nuclear Engineering. Wiley									
Eastern.									
Apple by, S.J., Foulkes, F.K. (1989). Fuelcell HandBook. Von Nostrand									
Reinhold.									
Linden, D. (1984). Hand book of batteries and Fuelcells. McGrawHill Book									
Company.									
Ohta, T. (1979). Solar Hydrogen energy systems. Peragam on Press.									
Gratzel, M. (1983). Energy Resources through photo chemistry and catalysis.									
Academic Press.									
Ohta, T. (1994). Energy Technology, Sources, Systems and Frontiers									
conversions, Pergamon.									
Speight, J.G.(1980). The chemistry and technology of petroleum. Marcel Dekker Inc.									
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create									
Course designed by: Dr T. Stalin									

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	S(3)	M(2)	L(1)	M(2)	M(2)	M(2)	M(2)	M(2)
CO2	M(2)	M(2)	S(3)	M(2)	L(1)	M(2)	S(3)	M(2)	M(2)	M(2)
CO3	M(2)	M(2)	S(3)	M(2)	L(1)	M(2)	S(3)	M(2)	M(2)	M(2)
CO4	M (2)	S(3)	S(3)	M (2)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	M(2)	S(3)	M(2)	L(1)	M(2)	M(2)	M(2)	M(2)	M(2)
W.A V	2.4	2.2	3	2	1.4	2.2	2.6	2.2	2.2	2.2

CourseOutcome VS Programme Outcomes

S-Strong (3),M-Medium(2),L-Low(1)
CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	S(3)	S(3)	S(3)	S(3)
CO2	M(2)	M(2)	S(3)	M(2)	M(2)
CO3	S(3)	M(2)	L(1)	M(2)	M(2)
CO4	S(3)	M(2)	L(1)	M(2)	M(2)
CO5	S(3)	M(2)	M(2)	M(2)	M(2)
W.AV	2.6	2.2	2	2.2	2.2

Course Outcome VS Programme Specific Outcomes

S–Strong	(3),M-Medi	um(2),L-Low(1)
-----------------	------------	----------------

NON-MAJOR ELECTIVE (NME) COURSE

NME	Course code:		Chemistry in Everyday Li	ife	Τ	Credits:2	Ho	urs:3
			UNIT - I					
Object	tive1	To understa	nd about drugs, vitamins					
Drugs a	nd Vi	tamins						
Drugs: I	Definit	ion–Classes o	of drugs: Antacids, Analgesics, A	ntibi	otics.	Antiseptics,		
Disinfec	tants.	Franquilizers.	Antifertility Drugs.		,	1)		
Vitamin	s: Wat	er soluble vit	amins: Vitamin B and C: Fat sol	luble	vitam	ins: A. D. E &	& K	_
Sources	- Phys	siological fun	ctions and deficiency symptoms					
Outco	me 1	The students	s would be able to know the effect	ct of	drugs	and vitamins		K3
			UNIT - II				I	
Object	tive 2	Students wi	I know about purification metho	ods fo	or wat	er		
Water	and F	ood	. Un un un					
Water: H	Hydros	phere - Hydr	ological cycle - Water quality par	ramet	ters –	Potable water	- Ty	pes of
water po	ollutan	ts - organic, i	norganic, toxic metals – Treatmo	ents:	filtrat	ion, chlorinati	on, a	adding
bleachin	ig pow	der. UV irrad	iation and Ozonation.			,	,	C
Food: A	rtificia	l Sweetening	Agents - Food Preservatives -	Food	addit	ives		
Outco	me 2	To acquire i food	nformation regarding different s	sustai	nabilit	y of water and	d	K2
			UNIT - II				I	
Object	tive 3	To introduce (iv) polymer prevention.	e the cleansing agents rs, cosmetics, colouring substance	ces; (v) bat	teries, corrosi	on a	nd
Cleansi	ng Ag	ents						
Soaps -	- Prep	aration, Typ	bes, Disadvantages of soaps	- Sy	ntheti	c Detergents	: A	nionic
Deterger	nts, Ca	tionic Deterg	ents and Non-ionic Detergents -	Adva	antage	s of synthetic	dete	ergents
over soa	aps. C	hemistry in (Cosmetics: Creams – Perfumes	– Ta	lcum	Powder – D)eod(orants.
Chemist	ry in	Colouring	Matter: Natural and syntheti	c co	lourir	g matters –	- D'	yes –
Classific	cation	on the basis	of Constitution and applications	5		e	•	
Outco	me 3	Students wi	ll know the utilization of cleanin	ig age	ent			K4
			UNIT - IV	00				
Object	tive 4	Information	regarding the polymers roled in	cher	nistry			
Chemis	try of	polymers						
Syntheti	c fibre	s - nylons, po	olyester – synthetic rubber - poly	ureth	ane ru	bber – reclain	ned	rubber
- sponge	e, foan	n rubber, ther	mocole. Fuels and Energy Resor	urces	: Type	es of fuels - li	iquid	1 fuels
- petrole	eum pi	roducts – ga	seous fuel - coal gas, producer	gas	and	biogas - Rocl	ket f	fuels -
solid an	d liaui	d propellants	- nuclear fuels - difference be	twee	n nucl	ear and chem	nical	fuels.
Renewa	ble sou	arces of energ	y - solar energy, wind energy ar	nd tid	al ene	ergy.		
Outco	me 4	Students wi	Il learn the designing of green sy ganic reactions	ynthe	sis for	some of the		K2

UNIT - V										
Objective 5	To provide information regarding Battery, Corrosion and Surface									
	Coatings technologies									
Battery, Corrosion and Surface Coatings										
Batteries-Basic concepts, battery characteristics, classification of batteries-primary, secondary										
and reserve batteries, fuel cells and super capacitors. Corrosion - Definition of chemical										
corrosion, types of corrosion, corrosion prevention- Pretreatment of the surface metallic										
coating, galv	coating, galvanizing, tinning, inorganic coatings, organic coatings, oil paints, water paints,									
special paints	s, enamels and lacquers.									
Outcome 5	The student would be able to know the significance and uses of battery, K2									
	corrosion preventing materials and coating products in our daily life.									
Suggestions	and readings:									
Sharma, 1	B.K. (2001). Industrial Chem. (12 th ed.). Goel Publishing House, 12th Edition.									
P.C. Jain	, P.C., Monica Jain. (2006). Engineering Chemistry (15 th ed.).									
Dhanphat	trai & Sons.									
Shrive, G	George and T Austin. (1984). Chemical Process Industries. McGraw Hill									
Book.										
Sharma B K (2000) Environmental Chemistry Goel Publishing House										
K1 Romombo	ar K2 Understand K3 Apply K4 Analyze K5 Evaluate K6 Create									
A1-Aemembe	Course designed by: Dr & Viswanathan									
	Course designed by. DI 5. Viswanathan									

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	S(3)	M(2)	L(1)	M(2)	M(2)	M(2)	M(2)	M(2)
CO2	M(2)	S(3)	S(3)	M(2)	L(1)	M(2)	S(3)	S(3)	M(2)	M(2)
CO3	M(2)	M(2)	S(3)	M(2)	S(3)	M(2)	S(3)	M(2)	S(3)	L(1)
CO4	M(2)	M(2)	S(3)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)
CO5	S(3)	M(2)	S(3)	M(2)	L(1)	M(2)	M(2)	M(2)	M(2)	M(2)
W.AV	2.4	2.2	3	2	1.6	2.2	2.6	2.2	2.2	1.8

Course Outcome VS Programme Outcomes

S–Strong (3),M-Medium(2),L-Low(1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	M(2)	M(2)	M(2)
CO2	M(2)	M(2)	S(3)	M(2)	M(2)
CO3	S(3)	M(2)	L(1)	M(2)	M(2)
CO4	M(2)	M(2)	S(3)	S(3)	M(2)
CO5	S(3)	M(2)	M(2)	M(2)	M(2)
W.AV	2.6	2	2.2	2.2	2

S-Strong (3),M-Medium(2),L-Low(1)

NME	IE Course code:		Basics in Environmental Science	T	Credits:2	Ho	ours:3	
			UNIT - I	1	11			
Obje	ective 1	Objectives: To sustainability.	how about our environment, po	llutio	n, ill-effect	s,		
Definition	ns of en	vironment, ecolo	ogy, pollution. Types of pollution	and	effects. Inc	lustr	ial	
effects or	nenviron	ment, general w	aste categorization. Hazardous ma	terial	s and their	ill		
effects. A	cid rain	, photochemical	smog, ozone-hole and green-house	e effe	ect.			
Out	come 1	Students will le causes.	earn about the basis of environmen	ntal fa	actors and		K1	
			UNIT - II					
Obje	ective 2	To acquire kno	wledge and understanding of pol	lutio	ns			
Types of	f polluti	on and effects:	air pollution, water pollution,	land	pollution,	pes	sticide	
pollution,	therma	l pollution, nois	e pollution, radioactive pollution.	Bas	ic informat	ion	about	
the nature	e and ty	pe of contamina	ants in industrial effluents of tanr	nery,	distillery,]	pape	er and	
pulp, tex	tile, fert	ilizer and electro	ochemical.					
Out	come 2	Students under atmospheric pc	stand will be able to know and solv Iluted chemicals.	e the	industrial a	ind	K2	
		6	UNIT - III			I		
Obje	ective 3	To learn about	different sources of water pollutio	ns				
Basic info Primary t treatment	ormation reatment methods	about the wat methods, Biolo	er pollution abatement methods: gical or secondary treatment metho	Pretro ods, A	eatment me Advanced o	ethoc r ter	ls, tiary	
Out	come 3	Students will be methods	e able to understand the technique a	nd tre	eatment	ŀ	Κ 4	
		18	UNIT - IV					
Obje	ective 4	To learn about	the Sustainable Development of th	ne env	vironment			
Industrial	hazard	s: types, guideli	nes and safety methods. Health h	nazar	ds due to i	ndus	strial	
chemicals	s in the	category of po	bisons, corrosives and flammable	s. T	he need fo	or G	reen	
Chemistr	y. Defii	nition and 12	principles of Green Chemistry.	Use	of non-tr	aditi	onal	
"Greener	' alterna	tives for sustain	able development.					
Out	come 4	Students under society from da	rstand and will be able to solve angerous.	the p	oroblems in		K4	
UNIT - V								
Obje	ective 5	To learn the ad chemicals	vancement of chemicals and techni	ques	for avoid to	oxic		
Environm	nentally	benign technolo	gies using Greener concepts: mic	crowa	ve, photoc	hem	ical	
degradati	on, enzy	mes for pulp ar	nd paper manufacture, biochemical	l rem	oval of			
phosphor	ous: Exp	loring Green res	sources for drug development, esse	ential	oils.			
Out	come 5	Students will be techniques.	e able to handle the eco-friendly and	l gree	ner]	K3	

Suggested Readings:									
Agarwal. (1986). Engineering Chemistry Kedar Nath Ram Nath, Meerut.									
Sharma, B. K., Kaur, H. (2000). Environmental Chemistry. Krishna Publishers, New									
Delhi.									
R. Shangi, R., Srivatsava, M.M. (2003) Green Chemistry. Narosa Publishers, New									
Delhi.									
Rao, M. N., Dutta, A. K.(1979). Wastewater Treatment (2/e), Oxford and IBH									
Publishing Co., Delhi.									
Tchobanoglous, G., Schroeder, E.D. (1985). Water Quality. Addison-Wesley,									
California.									
Eckenfelder, W. W. (1980). Principles of Water Quality Management. CBI Publishers,									
Boston.									
Heaton, C. A.(1984). Industrial Chemistry. Leonard Hill Publisher, Glasgow,									
Manahan, S. E. (2001). Environmental Chemistry. Lewis Publishers,									
London.									
Banerji, S. K. (2003). Environmental Chemistry Prentice Hall of India,									
New Delhi.									
Trivedi, R. N. (1998). A Text book of Environmental Pollution Control. Anmol									
Publications, NewDelhi.									
Srivatsava, M. M., Shangi, R. (2005). Chemistry for Green Environment. Narosa									
Publishers, New Delhi.									
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create									
Course designed by Dr.M. Sundrarajan and Dr S. Umadevi									

	PGO	PGO1								
	1	2	3	4	5	6	7	8	9	0
CO1	M(2)	L(1)	M(2)	L(1)	M(2)	L(1)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	M(2)	M(2)	L(1)	S(3)	M(2)	M(2)	M(2)	S(3)	M(2)
CO3	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	M(2)	S(3)	M(2)	L(1)	S(3)	M(2)	S(3)	M(2)	(-)
CO5	M(2)	L(1)	L(1)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	-
W.A	2.6	1.8	2.2	1.8	2	2.4	2	2.6	2.2	1.2
V										

Course Outcome Vs Program Outcomes

S-Strong(3),M-Medium(2),L-Low(1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	L(1)	M(2)	L(1)	L(1)
CO2	M(2)	S(3)	M(2)	M(2)	S(3)
CO3	S(3)	M(2)	S(3)	M(2)	M(1)
CO4	M(2)	S(3)	-	S(3)	L(1)
CO5	L(1)	M(2)	L(1)	L(1)	-
W.AV	2	2.2	1.6	1.8	1.2

Course Outcome Vs Program Specific Outcomes

S-Strong(3),M-Medium(2),L-Low(1)

SCIENCE CAMPUS